Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Generation of millijoule few-cycle pulses at 5 μm by indirect spectral shaping of the idler in an optical parametric chirped pulse amplifier

2018, Bock, Martin, Grafenstein, Lorenz von, Griebner, Uwe, Elsaesser, Thomas

Spectral pulse shaping in a high-intensity midwave-infrared (MWIR) optical parametric chirped pulse amplifier (OPCPA) operating at 1 kHz repetition rate is reported. We successfully apply a MWIR spatial light modulator (SLM) for the generation of ultrashort idler pulses at 5 μm wavelength. Only bulk optics and active phase control of the 3.5 μm signal pulses via the SLM are employed for generating compressed idler pulses with a duration of 80 fs. The 80-fs pulse duration corresponds to less than five optical cycles at the central wavelength of 5.0 μm. The pulse energy amounts to 1.0 mJ, which translates into a peak power of 10 GW. The generated pulse parameters represent record values for high-intensity MWIR OPCPAs.

Loading...
Thumbnail Image
Item

Few-cycle 65-µJ pulses at 11.4 µm for ultrafast nonlinear longwave-infrared spectroscopy

2022, Fuertjes, Pia, Bock, Martin, Grafenstein, Lorenz von, Ueberschaer, Dennis, Griebner, Uwe, Elsaesser, Thomas

Low-energy excitations can provide insight into the basic ultrafast nonequilibrium dynamics of condensed matter. High-energy femtosecond pulses in the long-wavelength infrared are required to induce such processes, and can be generated in an optical parametric chirped pulse amplification (OPCPA) system comprising three GaSe stages. A femtosecond Cr:ZnS laser serves as the front-end, providing the seed for the 2.0-µm pump and the 2.4-µm signal pulses without nonlinear conversion processes. The OPCPA system is pumped at 2.05 µm by a picosecond Ho:YLF regenerative amplifier at a 1-kHz repetition rate. The recompressed idler pulses at 11.4 µm have a duration of 185 fs and an unprecedented energy of 65 µJ, corresponding to a pump-to-idler conversion efficiency of 1.2%. Nonlinear transmission experiments in the range of the L2 infrared band of liquid water demonstrate the potential of the pulses for nonlinear vibrational spectroscopy of liquids and solids.

Loading...
Thumbnail Image
Item

35 W continuous-wave Ho:YAG single-crystal fiber laser

2020, Zhao, Yongguang, Wang, Li, Chen, Weidong, Wang, Jianlei, Song, Qingsong, Xu, Xiaodong, Liu, Ying, Shen, Deyuan, Xu, Jun, Mateos, Xavier, Loiko, Pavel, Wang, Zhengping, Xu, Xinguang, Griebner, Uwe, Petrov, Valentin

We report on a high-power Ho:YAG single-crystal fiber (SCF) laser inband pumped by a high-brightness Tm-fiber laser at 1908 nm. The Ho:YAG SCF grown by the micro-pulling-down technique exhibits a propagation loss of at. A continuous-wave output power of 35.2 W is achieved with a slope efficiency of 42.7%, which is to the best of our knowledge the highest power ever reported from an SCF-based laser in the 2 spectral range. © 2020 The Author(s). Published by Cambridge University Press in association with Chinese Laser Press.

Loading...
Thumbnail Image
Item

Tm3+-doped calcium lithium tantalum gallium garnet (Tm:CLTGG): novel laser crystal

2021, Alles, Adrian, Pan, Zhongben, Loiko, Pavel, Serres, Josep Maria, Slimi, Sami, Yingming, Shawuti, Tang, Kaiyang, Wang, Yicheng, Zhao, Yongguang, Dunina, Elena, Kornienko, Alexey, Camy, Patrice, Chen, Weidong, Wang, Li, Griebner, Uwe, Petrov, Valentin, Solé, Rosa Maria, Aguiló, Magdalena, Díaz, Francesc, Mateos, Xavier

We report on the development of a novel laser crystal with broadband emission properties at ∼2 µm – a Tm3+,Li+-codoped calcium tantalum gallium garnet (Tm:CLTGG). The crystal is grown by the Czochralski method. Its structure (cubic, sp. gr. 𝐼𝑎3¯𝑑, a = 12.5158(0) Å) is refined by the Rietveld method. Tm:CLTGG exhibits a relatively high thermal conductivity of 4.33 Wm-1K-1. Raman spectroscopy confirms a weak concentration of vacancies due to the charge compensation provided by Li+ codoping. The transition probabilities of Tm3+ ions are determined using the modified Judd-Ofelt theory yielding the intensity parameters Ω2 = 5.185, Ω4 = 0.650, Ω6 = 1.068 [10−20 cm2] and α = 0.171 [10−4 cm]. The crystal-field splitting of the Tm3+ multiplets is revealed at 10 K. The first diode-pumped Tm:CLTGG laser generates 1.08 W at ∼2 µm with a slope efficiency of 23.8%. The Tm3+ ions in CLTGG exhibit significant inhomogeneous spectral broadening due to the structure disorder (a random distribution of Ta5+ and Ga3+ cations over octahedral and tetrahedral lattice sites) leading to smooth and broad gain profiles (bandwidth: 130 nm) extending well above 2 µm and rendering Tm:CLTGG suitable for femtosecond pulse generation.

Loading...
Thumbnail Image
Item

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

2018-10-23, Loiko, Pavel, Bora, Tanujjal, Serres, Josep Maria, Yu, Haohai, Aguiló, Magdalena, Díaz, Francesc, Griebner, Uwe, Petrov, Valentin, Mateos, Xavier, Dutta, Joydeep

Zinc oxide (ZnO) nanorods (NRs) oriented along the crystallographic [001] axis are grown by the hydrothermal method on glass substrates. The ZnO NRs exhibit a broadband (1–2 µm) near-IR absorption ascribed to the singly charged zinc vacancy VZn−1. The saturable absorption of the ZnO NRs is studied at ≈1 µm under picosecond excitation, revealing a low saturation intensity, ≈10 kW/cm2, and high fraction of the saturable losses. The ZnO NRs are applied as saturable absorbers in diode-pumped Yb (≈1.03 µm) and Tm (≈1.94 µm) lasers generating nanosecond pulses. The ZnO NRs grown on various optical surfaces are promising broadband saturable absorbers for nanosecond near-IR lasers in bulk and waveguide geometries.

Loading...
Thumbnail Image
Item

Spectroscopy of solid-solution transparent sesquioxide laser ceramic Tm:LuYO3

2022, Eremeev, Kirill, Loiko, Pavel, Braud, Alain, Camy, Patrice, Zhang, Jian, Xu, Xiaodong, Zhao, Yongguang, Liu, Peng, Balabanov, Stanislav, Dunina, Elena, Kornienko, Alexey, Fomicheva, Liudmila, Mateos, Xavier, Griebner, Uwe, Petrov, Valentin, Wang, Li, Chen, Weidong

We report on a detailed spectroscopic study of a Tm3+-doped transparent sesquioxide ceramic based on a solid-solution (lutetia – yttria, LuYO3) composition. The ceramic was fabricated using commercial oxide powders by hot isostatic pressing at 1600°C for 3 h at 190 MPa argon pressure. The most intense Raman peak in Tm:LuYO3 at 385.4 cm−1 takes an intermediate position between those for the parent compounds and is notably broadened (linewidth: 12.8 cm−1). The transition intensities of Tm3+ ions were calculated using the Judd-Ofelt theory; the intensity parameters are W2 = 2.537, W4 = 1.156 and W6 = 0.939 [1020 cm2]. For the 3F4 → 3H6 transition, the stimulated-emission cross-section amounts to 0.27 × 10−20 cm2 at 2059nm and the reabsorption-free luminescence lifetime is 3.47 ms (the 3F4 radiative lifetime is 3.85 ± 0.1 ms). The Tm3+ ions in the ceramic exhibit long-wave multiphonon-assisted emission extending up to at least 2.35 µm; a phonon sideband at 2.23 µm is observed and explained by coupling between electronic transitions and the dominant Raman mode of the sesquioxides. Low temperature (12 K) spectroscopy reveals a significant inhomogeneous spectral broadening confirming formation of a substitutional solid-solution. The mixed ceramic is promising for ultrashort pulse generation at >2 µm.