Spectroscopy of solid-solution transparent sesquioxide laser ceramic Tm:LuYO3

Abstract

We report on a detailed spectroscopic study of a Tm3+-doped transparent sesquioxide ceramic based on a solid-solution (lutetia – yttria, LuYO3) composition. The ceramic was fabricated using commercial oxide powders by hot isostatic pressing at 1600°C for 3 h at 190 MPa argon pressure. The most intense Raman peak in Tm:LuYO3 at 385.4 cm−1 takes an intermediate position between those for the parent compounds and is notably broadened (linewidth: 12.8 cm−1). The transition intensities of Tm3+ ions were calculated using the Judd-Ofelt theory; the intensity parameters are W2 = 2.537, W4 = 1.156 and W6 = 0.939 [1020 cm2]. For the 3F4 → 3H6 transition, the stimulated-emission cross-section amounts to 0.27 × 10−20 cm2 at 2059nm and the reabsorption-free luminescence lifetime is 3.47 ms (the 3F4 radiative lifetime is 3.85 ± 0.1 ms). The Tm3+ ions in the ceramic exhibit long-wave multiphonon-assisted emission extending up to at least 2.35 µm; a phonon sideband at 2.23 µm is observed and explained by coupling between electronic transitions and the dominant Raman mode of the sesquioxides. Low temperature (12 K) spectroscopy reveals a significant inhomogeneous spectral broadening confirming formation of a substitutional solid-solution. The mixed ceramic is promising for ultrashort pulse generation at >2 µm.

Description
Keywords
Judd-Ofelt theory, Solid solutions, Temperature, Yttrium oxide
Citation
Eremeev, K., Loiko, P., Braud, A., Camy, P., Zhang, J., Xu, X., et al. (2022). Spectroscopy of solid-solution transparent sesquioxide laser ceramic Tm:LuYO3. 12(9). https://doi.org//10.1364/OME.471492
Collections
License
Optica Open Access Publishing Agreement