Search Results

Now showing 1 - 2 of 2
  • Item
    Unified signature cumulants and generalized Magnus expansions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Friz, Peter; Hager, Paul; Tapia, Nikolas
    The signature of a path can be described as its full non-commutative exponential. Following T. Lyons we regard its expectation, the expected signature, as path space analogue of the classical moment generating function. The logarithm thereof, taken in the tensor algebra, defines the signature cumulant. We establish a universal functional relation in a general semimartingale context. Our work exhibits the importance of Magnus expansions in the algorithmic problem of computing expected signature cumulants, and further offers a far-reaching generalization of recent results on characteristic exponents dubbed diamond and cumulant expansions; with motivation ranging from financial mathematics to statistical physics. From an affine process perspective, the functional relation may be interpreted as infinite-dimensional, non-commutative (``Hausdorff") variation of Riccati's equation. Many examples are given.
  • Item
    Optimal stopping with signatures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Bayer, Christian; Hager, Paul; Riedel, Sebastian; Schoenmakers, John G. M.
    We propose a new method for solving optimal stopping problems (such as American option pricing in finance) under minimal assumptions on the underlying stochastic process. We consider classic and randomized stopping times represented by linear functionals of the associated rough path signature, and prove that maximizing over the class of signature stopping times, in fact, solves the original optimal stopping problem. Using the algebraic properties of the signature, we can then recast the problem as a (deterministic) optimization problem depending only on the (truncated) expected signature. The only assumption on the process is that it is a continuous (geometric) random rough path. Hence, the theory encompasses processes such as fractional Brownian motion which fail to be either semi-martingales or Markov processes.