Search Results

Now showing 1 - 3 of 3
  • Item
    Plasma treatment limits human melanoma spheroid growth and metastasis independent of the ambient gas composition
    (Basel : MDPI AG, 2020) Hasse, Sybille; Meder, Tita; Freund, Eric; Woedtke, Thomas von; Bekeschus, Sander
    Melanoma skin cancer is still a deadly disease despite recent advances in therapy. Previous studies have suggested medical plasma technology as a promising modality for melanoma treatment. However, the efficacy of plasmas operated under different ambient air conditions and the comparison of direct and indirect plasma treatments are mostly unexplored for this tumor entity. Moreover, exactly how plasma treatment affects melanoma metastasis has still not been explained. Using 3D tumor spheroid models and high-content imaging technology, we addressed these questions by utilizing one metastatic and one non-metastatic human melanoma cell line targeted with an argon plasma jet. Plasma treatment was toxic in both cell lines. Modulating the oxygen and nitrogen ambient air composition (100/0, 75/25, 50/50, 25/75, and 0/100) gave similar toxicity and reduced the spheroid growth for all conditions. This was the case for both direct and indirect treatments, with the former showing a treatment time-dependent response while the latter resulted in cytotoxicity with the longest treatment time investigated. Live-cell imaging of in-gel cultured spheroids indicated that plasma treatment did not enhance metastasis, and flow cytometry showed a significant modulation of S100A4 but not in any of the five other metastasis-related markers (β-catenin, E-cadherin, LEF1, SLUG, and ZEB1) investigated. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Cold argon plasma as adjuvant tumour therapy on progressive head and neck cancer: A preclinical study
    (Basel : MDPI, 2019) Hasse, Sybille; Seebauer, Christian; Wende, Kristian; Schmidt, Anke; Metelmann, Hans-Robert; Woedtke, Thomas von; Bekeschus, Sander
    Investigating cold argon plasma (CAP) for medical applications is a rapidly growing, innovative field of research. The controllable supply of reactive oxygen and nitrogen species through CAP has the potential for utilization in tumour treatment. Maxillofacial surgery is limited if tumours grow on vital structures such as the arteria carotis. Here CAP could be considered as an option for adjuvant intraoperative tumour therapy especially in the case of squamous cell carcinoma of the head and neck. Further preclinical research is necessary to investigate the efficacy of this technology for future clinical applications in cancer treatment. Initially, a variety of in vitro assays was performed on two cell lines that served as surrogate for the squamous cell carcinoma (SCC) and healthy tissue, respectively. Cell viability, motility and the activation of apoptosis in SCC cells (HNO97) was compared with those in normal HaCaT keratinocytes. In addition, induction of apoptosis in ex vivo CAP treated human tissue biopsies of patients with tumours of the head and neck was monitored and compared to healthy control tissue of the same patient. In response to CAP treatment, normal HaCaT keratinocytes differed significantly from their malignant counterpart HNO97 cells in cell motility only whereas cell viability remained similar. Moreover, CAP treatment of tumour tissue induced more apoptotic cells than in healthy tissue that was accompanied by elevated extracellular cytochrome c levels. This study promotes a future role of CAP as an adjuvant intraoperative tumour therapy option in the treatment of head and neck cancer. Moreover, patient-derived tissue explants complement in vitro examinations in a meaningful way to reflect an antitumoral role of CAP. © 2019 by the authors.
  • Item
    Non-thermal plasma treatment induces MAPK signaling in human monocytes
    (Berlin : de Gruyter, 2014) Bundscherer, Lena; Nagel, Stefanie; Hasse, Sybille; Tresp, Helena; Wende, Kristian; Walther, Reinhard; Reuter, Stephan; Weltmann, Klaus-Dieter; Masur, Kai; Lindequist, Ulrike
    The application of non-thermal atmospheric pressure plasma raises a hope for the new wound healing strategies. Next to its antibacterial effect it is known to stimulate skin cells. However, monocytes are also needed for the complex process of a wound healing. This study investigates the impact of plasma on the intracellular signaling events in the primary human monocytes. The proliferative MEK-ERK (MAPK/ERK kinase-extracellular signal-regulated kinase) pathway was activated by short plasma treatment times. In contrast, an induction of the apoptotic JNK (c-Jun N-terminal kinase) cascade as well as activation of caspase 3 were observed after long plasma exposure. These findings indicate that monocytes can be differentially stimulated by plasma treatment and may contribute to the proper wound recovery.