Search Results

Now showing 1 - 10 of 19
Loading...
Thumbnail Image
Item

Bessel beam CARS of axially structured samples

2015, Heuke, Sandro, Zheng, Juanjuan, Akimov, Denis, Heintzmann, Rainer, Schmitt, Michael, Popp, Jürgen

We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

Loading...
Thumbnail Image
Item

Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction

2019, Markwirth, A, Lachetta, Mario, Mönkemöller, V., Heintzmann, Rainer, Hübner, Wolfgang, Huser, Thomas, Müller, Marcel

Super-resolved structured illumination microscopy (SR-SIM) is among the fastest fluorescence microscopy techniques capable of surpassing the optical diffraction limit. Current custom-build instruments are able to deliver two-fold resolution enhancement with high acquisition speed. SR-SIM is usually a two-step process, with raw-data acquisition and subsequent, time-consuming post-processing for image reconstruction. In contrast, wide-field and (multi-spot) confocal techniques produce high-resolution images instantly. Such immediacy is also possible with SR-SIM, by tight integration of a video-rate capable SIM with fast reconstruction software. Here we present instant SR-SIM by VIGOR (Video-rate Immediate GPU-accelerated Open-Source Reconstruction). We demonstrate multi-color SR-SIM at video frame-rates, with less than 250 ms delay between measurement and reconstructed image display. This is achieved by modifying and extending high-speed SR-SIM image acquisition with a new, GPU-enhanced, network-enabled image-reconstruction software. We demonstrate high-speed surveying of biological samples in multiple colors and live imaging of moving mitochondria as an example of intracellular dynamics.

Loading...
Thumbnail Image
Item

Impact of deuteration on the ultrafast nonlinear optical response of toluene and nitrobenzene

2019, Karras, Christian, Chemnitz, Mario, Heintzmann, Rainer, Schmidt, Markus A.

Nonlinear pulse propagation inside highly nonlinear media requires accurate knowledge on the temporal response function of the materials used particular in the case of liquids. Here we study the impact of deuteration on the ultrafast dynamics of toluene and nitrobenzene via all optical Kerr gating, showing substantially different electronic and molecular contributions, which was quantified by fitting a multichannel decay model to the data points. Specifically we found that deuteration imposes the time-integrated nonlinearities to reduce particular for toluene which could be caused by both reduced electronic hyperpolarizabilities as well as weaker intermolecular interactions. The results achieved reveal that deuterated organic solvents represent promising materials for infrared photonics since they offer extended infrared transmission compared to their non-deuterated counterparts while maintained strong nonlinear responses.

Loading...
Thumbnail Image
Item

Motion artefact detection in structured illumination microscopy for live cell imaging

2016, Förster, Ronny, Wicker, Kai, Müller, Walter, Jost, Aurélie, Heintzmann, Rainer

The reconstruction process of structured illumination microscopy (SIM) creates substantial artefacts if the specimen has moved during the acquisition. This reduces the applicability of SIM for live cell imaging, because these artefacts cannot always be recognized as such in the final image. A movement is not necessarily visible in the raw data, due to the varying excitation patterns and the photon noise. We present a method to detect motion by extracting and comparing two independent 3D wide-field images out of the standard SIM raw data without needing additional images. Their difference reveals moving objects overlaid with noise, which are distinguished by a probability theory-based analysis. Our algorithm tags motion-artefacts in the final high-resolution image for the first time, preventing the end-user from misinterpreting the data. We show and explain different types of artefacts and demonstrate our algorithm on a living cell.

Loading...
Thumbnail Image
Item

Ultrafast in cellulo photoinduced dynamics processes of the paradigm molecular light switch [Ru(bpy)2dppz]2+

2016, De la Cadena, Alejandro, Davydova, Dar’ya, Tolstik, Tatiana, Reichardt, Christian, Shukla, Sapna, Akimov, Denis, Heintzmann, Rainer, Popp, Jürgen, Dietzek, Benjamin

An in cellulo study of the ultrafast excited state processes in the paradigm molecular light switch [Ru(bpy)2dppz]2+ by localized pump-probe spectroscopy is reported for the first time. The localization of [Ru(bpy)2dppz]2+ in HepG2 cells is verified by emission microscopy and the characteristic photoinduced picosecond dynamics of the molecular light switch is observed in cellulo. The observation of the typical phosphorescence stemming from a 3MLCT state suggests that the [Ru(bpy)2dppz]2+ complex intercalates with the DNA in the nucleus. The results presented for this benchmark coordination compound reveal the necessity to study the photoinduced processes in coordination compounds for intracellular use, e.g. as sensors or as photodrugs, in the actual biological target environment in order to derive a detailed molecular mechanistic understanding of the excited-state properties of the systems in the actual biological target environment.

Loading...
Thumbnail Image
Item

Linear and non-linear optical imaging of cancer cells with silicon nanoparticles

2016, Tolstik, Elen, Osminkina, Liubov A., Akimov, Denis, Gongalsky, Maksim B., Kudryavtsev, Andrew A., Timoshenko, Victor Yu., Heintzmann, Rainer, Sivakov, Vladimir, Popp, Jürgen

New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours.

Loading...
Thumbnail Image
Item

Patterned illumination single molecule localization microscopy (piSMLM): user defined blinking regions of interest cellSTORM - Cost-effective Super-Resolution on a Cellphone using dSTORM

2018, Chen, S.-Y., Bestvater, F., Heintzmann, Rainer, Cremer, Christoph

Single molecule localization microscopy (SMLM) has been established as an important super-resolution technique for studying subcellular structures with a resolution down to a lateral scale of 10 nm. Usually samples are illuminated with a Gaussian shaped beam and consequently insufficient irradiance on the periphery of the illuminated region leads to artifacts in the reconstructed image which degrades image quality. We present a newly developed patterned illumination SMLM (piSMLM) to overcome the problem of uneven illumination by computer-generated holography. By utilizing a phase-only spatial light modulator (SLM) in combination with a modified Gerchberg-Saxton algorithm, a user-defined pattern with homogeneous and nearly speckle-free illumination is obtained. Our experimental results show that irradiance 1 to 5 kW/cm2 was achieved by using a laser with an output power of 200 mW in a region of 2000 µm2 to 500 µm2, respectively. Higher irradiance of up to 20 kW/cm2 can be reached by simply reducing the size of the region of interest (ROI). To demonstrate the application of the piSMLM, nuclear structures were imaged based on fluctuation binding-activated localization microscopy (fBALM). The super-resolution fBALM images revealed nuclear structures at a nanometer scale.Single molecule localization microscopy (SMLM) has been established as an important super-resolution technique for studying subcellular structures with a resolution down to a lateral scale of 10 nm. Usually samples are illuminated with a Gaussian shaped beam and consequently insufficient irradiance on the periphery of the illuminated region leads to artifacts in the reconstructed image which degrades image quality. We present a newly developed patterned illumination SMLM (piSMLM) to overcome the problem of uneven illumination by computer-generated holography. By utilizing a phase-only spatial light modulator (SLM) in combination with a modified Gerchberg-Saxton algorithm, a user-defined pattern with homogeneous and nearly speckle-free illumination is obtained. Our experimental results show that irradiance 1 to 5 kW/cm2 was achieved by using a laser with an output power of 200 mW in a region of 2000 µm2 to 500 µm2, respectively. Higher irradiance of up to 20 kW/cm2 can be reached by simply reducing the size of the region of interest (ROI). To demonstrate the application of the piSMLM, nuclear structures were imaged based on fluctuation binding-activated localization microscopy (fBALM). The super-resolution fBALM images revealed nuclear structures at a nanometer scale.

Loading...
Thumbnail Image
Item

Ex vivo Hyperspectral Autofluorescence Imaging and Localization of Fluorophores in Human Eyes with Age-Related Macular Degeneration

2018, Mohammed, Taariq, Tong, Yuehong, Agee, Julia, Challa, Nayanika, Heintzmann, Rainer, Hammer, Martin, Curcio , Christine A., Ach, Thomas, Ablonczy, Zsolt, Smith, R. Theodore

To characterize fluorophore signals from drusen and retinal pigment epithelium (RPE) and their changes in age related macular degeneration (AMD), the authors describe advances in ex vivo hyperspectral autofluorescence (AF) imaging of human eye tissue. Ten RPE flatmounts from eyes with AMD and 10 from eyes without AMD underwent 40× hyperspectral AF microscopic imaging. The number of excitation wavelengths tested was initially two (436 nm and 480 nm), then increased to three (436 nm, 480 nm, and 505 nm). Emission spectra were collected at 10 nm intervals from 420 nm to 720 nm. Non-negative matrix factorization (NMF) algorithms decomposed the hyperspectral images into individual emission spectra and their spatial abundances. These include three distinguishable spectra for RPE fluorophores (S1, S2, and S3) in both AMD and non-AMD eyes, a spectrum for drusen (SDr) only in AMD eyes, and a Bruch’s membrane spectrum that was detectable in normal eyes. Simultaneous analysis of datacubes excited atthree excitation wavelengths revealed more detailed spatial localization of the RPE spectra and SDr within drusen than exciting only at two wavelengths. Within AMD and non-AMD groups, two different NMF initialization methods were tested on each group and converged to qualitatively similar spectra. In AMD, the peaks of the SDr at ~510 nm (436 nm excitation) were particularly consistent. Between AMD and non-AMD groups, corresponding spectra in common, S1, S2, and S3, also had similar peak locations and shapes, but with some differences and further characterization warranted.

Loading...
Thumbnail Image
Item

The 2015 super-resolution microscopy roadmap

2015, Hell, Stefan W., Sahl, Steffen J., Bates, Mark, Zhuang, Xiaowei, Heintzmann, Rainer, Booth, Martin J., Bewersdorf, Joerg, Shtengel, Gleb, Hess, Harald, Tinnefeld, Philip, Honigmann, Alf, Jakobs, Stefan, Testa, Ilaria, Cognet, Laurent, Lounis, Brahim, Ewers, Helge, Davis, Simon J., Eggeling, Christian, Klenerman, David, Willig, Katrin I., Vicidomini, Giuseppe, Castello, Marco, Diaspro, Alberto, Cordes, Thorben

Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of 'super-resolution' far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough discussion on the concepts underlying super-resolution optical microscopy, the potential of different approaches, the importance of label optimization (such as reversible photoswitchable proteins) and applications in which these methods will have a significant impact.

Loading...
Thumbnail Image
Item

Successful optimization of reconstruction parameters in structured illumination microscopy

2019, Karras, Christian, Smedh, Maria, Förster, Ronny, Deschout, Hendrik, Fernandez-Rodriguez, Julia, Heintzmann, Rainer

The impact of the different reconstruction parameters in super-resolution structured illumination microscopy (SIM) on image artifacts is carefully analyzed. These parameters comprise the Wiener filter parameter, an apodization function, zero-frequency suppression and modifications of the optical transfer function. A detailed investigation of the reconstructed image spectrum is concluded to be suitable for identifying artifacts. For this purpose, two samples, an artificial test slide and a more realistic biological system, were used to characterize the artifact classes and their correlation with the image spectra as well as the reconstruction parameters. In addition, a guideline for efficient parameter optimization is suggested and the implementation of the parameters in selected up-to-date processing packages (proprietary and open-source) is depicted. © 2018 The Authors