Search Results

Now showing 1 - 2 of 2
  • Item
    Extending Transition Path Theory: Periodically Driven and Finite-Time Dynamics
    (New York, NY : Springer, 2020) Helfmann, Luzie; Ribera Borrell, Enric; Schütte, Christof; Koltai, Péter
    Given two distinct subsets A, B in the state space of some dynamical system, transition path theory (TPT) was successfully used to describe the statistical behavior of transitions from A to B in the ergodic limit of the stationary system. We derive generalizations of TPT that remove the requirements of stationarity and of the ergodic limit and provide this powerful tool for the analysis of other dynamical scenarios: periodically forced dynamics and time-dependent finite-time systems. This is partially motivated by studying applications such as climate, ocean, and social dynamics. On simple model examples, we show how the new tools are able to deliver quantitative understanding about the statistical behavior of such systems. We also point out explicit cases where the more general dynamical regimes show different behaviors to their stationary counterparts, linking these tools directly to bifurcations in non-deterministic systems. © 2020, The Author(s).
  • Item
    Statistical analysis of tipping pathways in agent-based models
    (Berlin ; Heidelberg : Springer, 2021) Helfmann, Luzie; Heitzig, Jobst; Koltai, Péter; Kurths, Jürgen; Schütte, Christof
    Agent-based models are a natural choice for modeling complex social systems. In such models simple stochastic interaction rules for a large population of individuals on the microscopic scale can lead to emergent dynamics on the macroscopic scale, for instance a sudden shift of majority opinion or behavior. Here we are introducing a methodology for studying noise-induced tipping between relevant subsets of the agent state space representing characteristic configurations. Due to a large number of interacting individuals, agent-based models are high-dimensional, though usually a lower-dimensional structure of the emerging collective behaviour exists. We therefore apply Diffusion Maps, a non-linear dimension reduction technique, to reveal the intrinsic low-dimensional structure. We characterize the tipping behaviour by means of Transition Path Theory, which helps gaining a statistical understanding of the tipping paths such as their distribution, flux and rate. By systematically studying two agent-based models that exhibit a multitude of tipping pathways and cascading effects, we illustrate the practicability of our approach.