Search Results

Now showing 1 - 10 of 47
  • Item
    On the co-derivative of normal cone mappings to inequality systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Henrion, René; Outrata, Jiří; Surowiec, Thomas
    The paper deals with co-derivative formulae for normal cone mappings to smooth inequality systems. Both, the regular (Linear Independence Constraint Qualification satisfied) and nonregular (Mangasarian-Fromovitz Constraint Qualification satisfied) case are considered. A major part of the results relies on general transformation formulae previously obtained by Mordukhovich and Outrata. This allows to derive exact formulae for general smooth, regular and polyhedral, possibly nonregular systems. In the nonregular, nonpolyhedral case a generalized transformation formula by Mordukhovich and Outrata applies, however a major difficulty consists in checking a calmness condition of a certain multivalued mapping. The paper provides a translation of this condition in terms of much easier to verify constraint qualifications. A series of examples illustrates the use and comparison of the presented formulae.
  • Item
    Stability and sensitivity of optimization problems with first order stochastic dominance constraints
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Dentcheva, Darinka; Henrion, René; Ruszczynski, Andrzej
    We analyze the stability and sensitivity of stochastic optimization problems with stochastic dominance constraints of first order. We consider general perturbations of the underlying probability measures in the space of regular measures equipped with a suitable discrepancy distance. We show that the graph of the feasible set mapping is closed under rather general assumptions. We obtain conditions for the continuity of the optimal value and upper-semicontinuity of the optimal solutions, as well as quantitative stability estimates of Lipschitz type. Furthermore, we analyze the sensitivity of the optimal value and obtain upper and lower bounds for the directional derivatives of the optimal value. The estimates are formulated in terms of the dual utility functions associated with the dominance constraints.
  • Item
    On properties of different notions of centers for convex cones
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Henrion, René; Seeger, Alberto
    The points on the revolution axis of a circular cone are somewhat special: they are the "most interior'' elements of the cone. This paper addresses the issue of formalizing the concept of center for a convex cone that is not circular. Four distinct proposals are studied in detail: the incenter, the circumcenter, the inner center, and the outer center. The discussion takes place in the context of a reflexive Banach space.
  • Item
    Strong stationary solutions to equilibrium problems with equilibrium constraints with applications to an electricity spot market model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Henrion, René; Outrata, Jiří; Surowiec, Thomas
    Literaturverz. S. 26 In this paper, we consider the characterization of strong stationary solutions to equilibrium problems with equilibrium constraints (EPECs). Assuming that the underlying generalized equation satisfies strong regularity in the sense of Robinson, an explicit multiplier-based stationarity condition can be derived. This is applied then to an equilibrium model arising from ISO-regulated electricity spot markets.
  • Item
    On calmness conditions in convex bilevel programming
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Henrion, René; Surowiec, Thomas
    In this article we compare two different calmness conditions which are widely used in the literature on bilevel programming and on mathematical programs with equilibrium constraints. In order to do so, we consider convex bilevel programming as a kind of intersection between both research areas. The so-called partial calmness concept is based on the function value approach for describing the lower level solution set. Alternatively, calmness in the sense of multifunctions may be considered for perturbations of the generalized equation representing the same lower level solution set. Both concepts allow to derive first order necessary optimality conditions via tools of generalized differentiation introduced by Mordukhovich. They are very different, however, concerning their range of applicability and the form of optimality conditions obtained. The results of this paper seem to suggest that partial calmness is considerably more restrictive than calmness of the perturbed generalized equation. This fact is also illustrated by means of a dicretized obstacle control problem.
  • Item
    Inradius and circumradius of various convex cones arising in applications
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Henrion, René; Seeger, Alberto
    This note addresses the issue of computing the inradius and the circumradius of a convex cone in a Euclidean space. It deals also with the related problem of finding the incenter and the circumcenter of the cone. We work out various examples of convex cones arising in applications.
  • Item
    Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Henrion, René; Outrata, Jií̌; Surowiec, Thomas
    We consider an equilibrium problem with equilibrium constraints (EPEC) as it arises from modeling competition in an electricity spot market (under ISO regulation). For a characterization of equilibrium solutions, so-called M-stationarity conditions are derived. This requires a structural analysis of the problem first (constraint qualifications, strong regularity). Second, the calmness property of a certain multifunction has to be verified in order to justify M-stationarity. Third, for stating the stationarity conditions, the co-derivative of a normal cone mapping has to be calculated. Finally, the obtained necessary conditions are made fully explicit in terms of the problem data for one typical constellation. A simple two-settlements example serves as an illustration.
  • Item
    On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Berthold, Holger; Heitsch, Holger; Henrion, René; Schwientek, Jan
    We present an adaptive grid refinement algorithm to solve probabilistic optimization problems with infinitely many random constraints. Using a bilevel approach, we iteratively aggregate inequalities that provide most information not in a geometric but in a probabilistic sense. This conceptual idea, for which a convergence proof is provided, is then adapted to an implementable algorithm. The efficiency of our approach when compared to naive methods based on uniform grid refinement is illustrated for a numerical test example as well as for a water reservoir problem with joint probabilistic filling level constraints.
  • Item
    Uniform boundedness of norms of convex and nonconvex processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Henrion, René; Seeger, Alberto
    The lower limit of a sequence of closed convex processes is again a closed convex process. In this note we prove the following uniform boundedness principle: if the lower limit is nonempty-valued everywhere, then, starting from a certain index, the given sequence is uniformly norm-bounded. As shown with an example, the uniform boundedness principle is not true if one drops convexity. By way of illustration, we consider an application to the controllability analysis of differential inclusions.
  • Item
    Optimal control of the sweeping process
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Colombo, Giovanni; Henrion, René; Hoang, Nguyen D.; Mordukhovich, Borils S.
    We formulate and study an optimal control problem for the sweeping (Moreau) process, where control functions enter the moving sweeping set. To the best of our knowledge, this is the first study in the literature devoted to optimal control of the sweeping process. We first establish an existence theorem of optimal solutions and then derive necessary optimality conditions for this optimal control problem of a new type, where the dynamics is governed by discontinuous differential inclusions with variable right-hand sides. Our approach to necessary optimality conditions is based on the method of discrete approximations and advanced tools of variational analysis and generalized differentiation. The final results obtained are given in terms of the initial data of the controlled sweeping process and are illustrated by nontrivial examples.