Search Results

Now showing 1 - 10 of 17
  • Item
    Mechanochemical activation of disulfide-based multifunctional polymers for theranostic drug release
    (Cambridge : RSC, 2021) Shi, Zhiyuan; Song, Qingchuan; Göstl, Robert; Herrmann, Andreas
    Drug delivery systems responsive to physicochemical stimuli allow spatiotemporal control over drug activity to overcome limitations of systemic drug administration. Alongside, the non-invasive real-time tracking of drug release and uptake remains challenging as pharmacophore and reporter function are rarely unified within one molecule. Here, we present an ultrasound-responsive release system based on the mechanochemically induced 5-exo-trigcyclization upon scission of disulfides bearing cargo molecules attachedviaβ-carbonate linker within the center of a water soluble polymer. In this bifunctional theranostic approach, we release one reporter molecule per drug molecule to quantitatively track drug release and distribution within the cell in real-time. We useN-butyl-4-hydroxy-1,8-naphthalimide and umbelliferone as fluorescent reporter molecules to accompany the release of camptothecin and gemcitabine as clinically employed anticancer agents. The generality of this approach paves the way for the theranostic release of a variety of probes and drugs by ultrasound. © The Royal Society of Chemistry 2020.
  • Item
    Supercharged Proteins and Polypeptides
    (Weinheim : Wiley-VCH, 2020) Ma, Chao; Malessa, Anke; Boersma, Arnold J.; Liu, Kai; Herrmann, Andreas
    Electrostatic interactions play a vital role in nature. Biomacromolecules such as proteins are orchestrated by electrostatics, among other intermolecular forces, to assemble and organize biochemistry. Natural proteins with a high net charge exist in a folded state or are unstructured and can be an inspiration for scientists to artificially supercharge other protein entities. Recent findings show that supercharging proteins allows for control of their properties such as temperature resistance and catalytic activity. One elegant method to transfer the favorable properties of supercharged proteins to other proteins is the fabrication of fusions. Genetically engineered, supercharged unstructured polypeptides (SUPs) are just one promising fusion tool. SUPs can also be complexed with artificial entities to yield thermotropic and lyotropic liquid crystals and liquids. These architectures represent novel bulk materials that are sensitive to external stimuli. Interestingly, SUPs undergo fluid–fluid phase separation to form coacervates. These coacervates can even be directly generated in living cells or can be combined with dissipative fiber assemblies that induce life-like features. Supercharged proteins and SUPs are developed into exciting classes of materials. Their synthesis, structures, and properties are summarized. Moreover, potential applications are highlighted and challenges are discussed. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Performing DNA nanotechnology operations on a zebrafish
    (Cambridge : RSC, 2018) Yang, Jian; Meng, Zhuojun; Liu, Qing; Shimada, Yasuhito; Olsthoorn, René C. L.; Spaink, Herman P.; Herrmann, Andreas; Kros, Alexander
    Nanoscale engineering of surfaces is becoming an indispensable technique to modify membranes and, thus cellular behaviour. Here, such membrane engineering related was explored on the surface of a living animal using DNA nanotechnology. We demonstrate the immobilization of oligonucleotides functionalized with a membrane anchor on 2 day old zebrafish. The protruding single-stranded DNA on the skin of zebrafish served as a handle for complementary DNAs, which allowed the attachment of small molecule cargo, liposomes and dynamic relabeling by DNA hybridization protocols. Robust anchoring of the oligonucleotides was proven as DNA-based amplification processes were successfully performed on the outer membrane of the zebrafish enabling the multiplication of surface functionalities from a single DNA-anchoring unit and the dramatic improvement of fluorescent labeling of these animals. As zebrafish are becoming an alternative to animal models in drug development, toxicology and nanoparticles characterization, we believe the platform presented here allows amalgamation of DNA nanotechnology tools with live animals and this opens up yet unexplored avenues like efficient bio-barcoding as well as in vivo tracking. © The Royal Society of Chemistry.
  • Item
    Modular and Versatile Trans-Encoded Genetic Switches
    (Weinheim : Wiley-VCH, 2020) Paul, Avishek; Warszawik, Eliza M.; Loznik, Mark; Boersma, Arnold J.; Herrmann, Andreas
    Current bacterial RNA switches suffer from lack of versatile inputs and are difficult to engineer. We present versatile and modular RNA switches that are trans-encoded and based on tRNA-mimicking structures (TMSs). These switches provide a high degree of freedom for reengineering and can thus be designed to accept a wide range of inputs, including RNA, small molecules, and proteins. This powerful approach enables control of the translation of protein expression from plasmid and genome DNA. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA
  • Item
    Liquefaction of Biopolymers: Solvent-free Liquids and Liquid Crystals from Nucleic Acids and Proteins
    (Washington, DC : ACS Publications, 2017) Liu, Kai; Ma, Chao; Göstl, Robert; Zhang, Lei; Herrmann, Andreas
    ConspectusBiomacromolecules, such as nucleic acids, proteins, and virus particles, are persistent molecular entities with dimensions that exceed the range of their intermolecular forces hence undergoing degradation by thermally induced bond-scission upon heating. Consequently, for this type of molecule, the absence of a liquid phase can be regarded as a general phenomenon. However, certain advantageous properties usually associated with the liquid state of matter, such as processability, flowability, or molecular mobility, are highly sought-after features for biomacromolecules in a solvent-free environment. Here, we provide an overview over the design principles and synthetic pathways to obtain solvent-free liquids of biomacromolecular architectures approaching the topic from our own perspective of research. We will highlight the milestones in synthesis, including a recently developed general surfactant complexation method applicable to a large variety of biomacromolecules as well as other synthetic principles granting access to electrostatically complexed proteins and DNA.These synthetic pathways retain the function and structure of the biomacromolecules even under extreme, nonphysiological conditions at high temperatures in water-free melts challenging the existing paradigm on the role of hydration in structural biology. Under these conditions, the resulting complexes reveal their true potential for previously unthinkable applications. Moreover, these protocols open a pathway toward the assembly of anisotropic architectures, enabling the formation of solvent-free biomacromolecular thermotropic liquid crystals. These ordered biomaterials exhibit vastly different mechanical properties when compared to the individual building blocks. Beyond the preparative aspects, we will shine light on the unique potential applications and technologies resulting from solvent-free biomacromolecular fluids: From charge transport in dehydrated liquids to DNA electrochromism to biocatalysis in the absence of a protein hydration shell. Moreover, solvent-free biological liquids containing viruses can be used as novel storage and process media serving as a formulation technology for the delivery of highly concentrated bioactive compounds. We are confident that this new class of hybrid biomaterials will fuel further studies and applications of biomacromolecules beyond water and other solvents and in a much broader context than just the traditional physiological conditions. © 2017 American Chemical Society.
  • Item
    Self-Regenerating Soft Biophotovoltaic Devices
    (Washington, DC : ACS Publications, 2018) Qiu, Xinkai; Castañeda Ocampo, Olga; de Vries, Hendrik W.; van Putten, Maikel; Loznik, Mark; Herrmann, Andreas; Chiechi, Ryan C.
    This paper describes the fabrication of soft, stretchable biophotovoltaic devices that generate photocurrent from photosystem I (PSI) complexes that are self-assembled onto Au electrodes with a preferred orientation. Charge is collected by the direct injection of electrons into the Au electrode and the transport of holes through a redox couple to liquid eutectic gallium-indium (EGaIn) electrodes that are confined to microfluidic pseudochannels by arrays of posts. The pseudochannels are defined in a single fabrication step that leverages the non-Newtonian rheology of EGaIn. This strategy is extended to the fabrication of reticulated electrodes that are inherently stretchable. A simple shadow evaporation technique is used to increase the surface area of the Au electrodes by a factor of approximately 106 compared to planar electrodes. The power conversion efficiency of the biophotovoltaic devices decreases over time, presumably as the PSI complexes denature and/or detach from the Au electrodes. However, by circulating a solution of active PSI complexes the devices self-regenerate by mass action/self-assembly. These devices leverage simple fabrication techniques to produce complex function and prove that photovoltaic devices comprising PSI can retain the ability to regenerate, one of the most important functions of photosynthetic organisms. © 2018 American Chemical Society.
  • Item
    On the impact of competing intra- and intermolecular triplet-state quenching on photobleaching and photoswitching kinetics of organic fluorophores
    (Cambridge : RSC Publ., 2019) Smit, Jochem H.; van der Velde, Jasper H. M.; Huang, Jingyi; Trauschke, Vanessa; Henrikus, Sarah S.; Chen, Si; Eleftheriadis, Nikolaos; Warszawik, Eliza M.; Herrmann, Andreas; Cordes, Thorben
    While buffer cocktails remain the most commonly used method for photostabilization and photoswitching of fluorescent markers, intramolecular triplet-state quenchers emerge as an alternative strategy to impart fluorophores with ‘self-healing’ or even functional properties such as photoswitching. In this contribution, we evaluated combinations of both approaches and show that inter- and intramolecular triplet-state quenching processes compete with each other. We find that although the rate of triplet-state quenching is additive, the photostability is limited by the faster pathway. Often intramolecular processes dominate the photophysical situation for combinations of covalently-linked and solution-based photostabilizers and photoswitching agents. Furthermore we show that intramolecular photostabilizers can protect fluorophores from reversible off-switching events caused by solution-additives, which was previously misinterpreted as photobleaching. Our studies also provide practical guidance for usage of photostabilizer–dye conjugates for STORM-type super-resolution microscopy permitting the exploitation of their improved photophysics for increased spatio-temporal resolution. Finally, we provide evidence that the biochemical environment, e.g., proximity of aromatic amino-acids such as tryptophan, reduces the photostabilization efficiency of commonly used buffer cocktails. Not only have our results important implications for a deeper mechanistic understanding of self-healing dyes, but they will provide a general framework to select label positions for optimal and reproducible photostability or photoswitching kinetics in different biochemical environments.
  • Item
    Anti-Stokes Stress Sensing: Mechanochemical Activation of Triplet-Triplet Annihilation Photon Upconversion
    (Weinheim : Wiley-VCH, 2019) Yildiz, Deniz; Baumann, Christoph; Mikosch, Annabel; Kuehne, Alexander J.C.; Herrmann, Andreas; Göstl, Robert
    The development of methods to detect damage in macromolecular materials is of paramount importance to understand their mechanical failure and the structure–property relationships of polymers. Mechanofluorophores are useful and sensitive molecular motifs for this purpose. However, to date, tailoring of their optical properties remains challenging and correlating emission intensity to force induced material damage and the respective events on the molecular level is complicated by intrinsic limitations of fluorescence and its detection techniques. Now, this is tackled by developing the first stress-sensing motif that relies on photon upconversion. By combining the Diels–Alder adduct of a π-extended anthracene with the porphyrin-based triplet sensitizer PtOEP in polymers, triplet–triplet annihilation photon upconversion of green to blue light is mechanochemically activated in solution as well as in the solid state. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Activation of the Catalytic Activity of Thrombin for Fibrin Formation by Ultrasound
    (Weinheim : Wiley-VCH, 2021) Zhao, Pengkun; Huo, Shuaidong; Fan, Jilin; Chen, Junlin; Kiessling, Fabian; Boersma, Arnold J.; Göstl, Robert; Herrmann, Andreas
    The regulation of enzyme activity is a method to control biological function. We report two systems enabling the ultrasound-induced activation of thrombin, which is vital for secondary hemostasis. First, we designed polyaptamers, which can specifically bind to thrombin, inhibiting its catalytic activity. With ultrasound generating inertial cavitation and therapeutic medical focused ultrasound, the interactions between polyaptamer and enzyme are cleaved, restoring the activity to catalyze the conversion of fibrinogen into fibrin. Second, we used split aptamers conjugated to the surface of gold nanoparticles (AuNPs). In the presence of thrombin, these assemble into an aptamer tertiary structure, induce AuNP aggregation, and deactivate the enzyme. By ultrasonication, the AuNP aggregates reversibly disassemble releasing and activating the enzyme. We envision that this approach will be a blueprint to control the function of other proteins by mechanical stimuli in the sonogenetics field. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Electrostatically PEGylated DNA enables salt-free hybridization in water
    (Cambridge : RSC, 2019) Chakraborty, Gurudas; Balinin, Konstantin; Portale, Giuseppe; Loznik, Mark; Polushkin, Evgeny; Weil, Tanja; Herrmann, Andreas
    Chemically modified nucleic acids have long served as a very important class of bio-hybrid structures. In particular, the modification with PEG has advanced the scope and performance of oligonucleotides in materials science, catalysis and therapeutics. Most of the applications involving pristine or modified DNA rely on the potential of DNA to form a double-stranded structure. However, a substantial requirement for metal-cations to achieve hybridization has restricted the range of applications. To extend the applicability of DNA in salt-free or low ionic strength aqueous medium, we introduce noncovalent DNA-PEG constructs that allow canonical base-pairing between individually PEGylated complementary strands resulting in a double-stranded structure in salt-free aqueous medium. This method relies on grafting of amino-terminated PEG polymers electrostatically onto the backbone of DNA, which results in the formation of a PEG-envelope. The specific charge interaction of PEG molecules with DNA, absolute absence of metal ions within the PEGylated DNA molecules and formation of a double helix that is significantly more stable than the duplex in an ionic buffer have been unequivocally demonstrated using multiple independent characterization techniques. This journal is © The Royal Society of Chemistry.