Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Existence, iteration procedures and directional differentiability for parabolic QVIs

2020, Alphonse, Amal, Hintermüller, Michael, Rautenberg, Carlos N.

We study parabolic quasi-variational inequalities (QVIs) of obstacle type. Under appropriate assumptions on the obstacle mapping, we prove the existence of solutions of such QVIs by two methods: one by time discretisation through elliptic QVIs and the second by iteration through parabolic variational inequalities. Using these results, we show the directional differentiability (in a certain sense) of the solution map which takes the source term of a parabolic QVI into the set of solutions, and we relate this result to the contingent derivative of the aforementioned map. We finish with an example where the obstacle mapping is given by the inverse of a parabolic differential operator.

Loading...
Thumbnail Image
Item

Optimal control and directional differentiability for elliptic quasi-variational inequalities

2020, Alphonse, Amal, Hintermüller, Michael, Rautenberg, Carlos N.

We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a number of results on the existence of solutions, directional differentiability and optimal control of such QVIs. We give three existence theorems based on an order approach, an iteration scheme and a sequential regularisation through partial differential equations. We show that the solution map taking the source term into the set of solutions of the QVI is directionally differentiable for general unsigned data, thereby extending the results of our previous work which provided a first differentiability result for QVIs in infinite dimensions. Optimal control problems with QVI constraints are also considered and we derive various forms of stationarity conditions for control problems, thus supplying among the first such results in this area.

Loading...
Thumbnail Image
Item

On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities

2020, Alphonse, Amal, Hintermüller, Michael, Rautenberg, Carlos N.

In this short note, we prove that the minimal and maximal solution maps associated to elliptic quasi-variational inequalities of obstacle type are directionally differentiable with respect to the forcing term and for directions that are signed. On the way, we show that the minimal and maximal solutions can be seen as monotone limits of solutions of certain variational inequalities and that the aforementioned directional derivatives can also be characterised as the monotone limits of sequences of directional derivatives associated to variational inequalities.

Loading...
Thumbnail Image
Item

Constrained exact boundary controllability of a semilinear model for pipeline gas flow

2021, Gugat, Martin, Habermann, Jens, Hintermüller, Michael, Huber, Olivier

While the quasilinear isothermal Euler equations are an excellent model for gas pipeline flow, the operation of the pipeline flow with high pressure and small Mach numbers allows us to obtain approximate solutions by a simpler semilinear model. We provide a derivation of the semilinear model that shows that the semilinear model is valid for sufficiently low Mach numbers and sufficiently high pressures. We prove an existence result for continuous solutions of the semilinear model that takes into account lower and upper bounds for the pressure and an upper bound for the magnitude of the Mach number of the gas flow. These state constraints are important both in the operation of gas pipelines and to guarantee that the solution remains in the set where the model is physically valid. We show the constrained exact boundary controllability of the system with the same pressure and Mach number constraints.

Loading...
Thumbnail Image
Item

Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy

2021, Hintermüller, Michael, Stengl, Steven-Marian, Surowiec, Thomas M.

The quantification of uncertainties in image segmentation based on the Mumford–Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio–Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings.

Loading...
Thumbnail Image
Item

Optimization with learning-informed differential equation constraints and its applications

2020, Dong, Guozhi, Hintermüller, Michael, Papafitsoros, Kostas

Inspired by applications in optimal control of semilinear elliptic partial differential equations and physics-integrated imaging, differential equation constrained optimization problems with constituents that are only accessible through data-driven techniques are studied. A particular focus is on the analysis and on numerical methods for problems with machine-learned components. For a rather general context, an error analysis is provided, and particular properties resulting from artificial neural network based approximations are addressed. Moreover, for each of the two inspiring applications analytical details are presented and numerical results are provided.

Loading...
Thumbnail Image
Item

On the convexity of optimal control problems involving non-linear PDEs or VIs and applications to Nash games (changed title: Vector-valued convexity of solution operators with application to optimal control problems)

2020, Hintermüller, Michael, Stengl, Steven-Marian

Generalized Nash equilibrium problems in function spaces involving PDEs are considered. One of the central issues arising in this context is the question of existence, which requires the topological characterization of the set of minimizers for each player of the associated Nash game. In this paper, we propose conditions on the operator and the functional that guarantee the reduced formulation to be a convex minimization problem. Subsequently, we generalize results of convex analysis to derive optimality systems also for non-smooth operators. Our theoretical findings are illustrated by examples.

Loading...
Thumbnail Image
Item

A generalized $Gamma$-convergence concept for a type of equilibrium problems

2021, Hintermüller, Michael, Stengl, Steven-Marian

A novel generalization of Γ-convergence applicable to a class of equilibrium problems is studied. After the introduction of the latter, a variety of its applications is discussed. The existence of equilibria with emphasis on Nash equilibrium problems is investigated. Subsequently, our Γ-convergence notion for equilibrium problems, generalizing the existing one from optimization, is introduced and discussed. The work ends with its application to a class of penalized generalized Nash equilibrium problems and quasi-variational inequalities.

Loading...
Thumbnail Image
Item

Optimality conditions and Moreau--Yosida regularization for almost sure state constraints

2021, Geiersbach, Caroline, Hintermüller, Michael

We analyze a potentially risk-averse convex stochastic optimization problem, where the control is deterministic and the state is a Banach-valued essentially bounded random variable. We obtain strong forms of necessary and sufficient optimality conditions for problems subject to equality and conical constraints. We propose a Moreau--Yosida regularization for the conical constraint and show consistency of the optimality conditions for the regularized problem as the regularization parameter is taken to infinity.

Loading...
Thumbnail Image
Item

Dualization and automatic distributed parameter selection of total generalized variation via bilevel optimization

2020, Hintermüller, Michael, Papafitsoros, Kostas, Rautenberg, Carlos N., Sun, Hongpeng

Total Generalized Variation (TGV) regularization in image reconstruction relies on an infimal convolution type combination of generalized first- and second-order derivatives. This helps to avoid the staircasing effect of Total Variation (TV) regularization, while still preserving sharp contrasts in images. The associated regularization effect crucially hinges on two parameters whose proper adjustment represents a challenging task. In this work, a bilevel optimization framework with a suitable statistics-based upper level objective is proposed in order to automatically select these parameters. The framework allows for spatially varying parameters, thus enabling better recovery in high-detail image areas. A rigorous dualization framework is established, and for the numerical solution, two Newton type methods for the solution of the lower level problem, i.e. the image reconstruction problem, and two bilevel TGV algorithms are introduced, respectively. Denoising tests confirm that automatically selected distributed regularization parameters lead in general to improved reconstructions when compared to results for scalar parameters.