Search Results

Now showing 1 - 10 of 46
  • Item
    Variable Step Mollifiers and Applications
    (Berlin ; Heidelberg : Springer, 2020) Hintermüller, Michael; Papafitsoros, Kostas; Rautenberg, Carlos N.
    We consider a mollifying operator with variable step that, in contrast to the standard mollification, is able to preserve the boundary values of functions. We prove boundedness of the operator in all basic Lebesgue, Sobolev and BV spaces as well as corresponding approximation results. The results are then applied to extend recently developed theory concerning the density of convex intersections. © 2020, The Author(s).
  • Item
    Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Hintermüller, Michael; Stengl, Steven-Marian; Surowiec, Thomas M.
    The quantification of uncertainties in image segmentation based on the Mumford–Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio–Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings.
  • Item
    Existence, iteration procedures and directional differentiability for parabolic QVIs
    (Berlin ; Heidelberg : Springer, 2020) Alphonse, Amal; Hintermüller, Michael; Rautenberg, Carlos N.
    We study parabolic quasi-variational inequalities (QVIs) of obstacle type. Under appropriate assumptions on the obstacle mapping, we prove the existence of solutions of such QVIs by two methods: one by time discretisation through elliptic QVIs and the second by iteration through parabolic variational inequalities. Using these results, we show the directional differentiability (in a certain sense) of the solution map which takes the source term of a parabolic QVI into the set of solutions, and we relate this result to the contingent derivative of the aforementioned map. We finish with an example where the obstacle mapping is given by the inverse of a parabolic differential operator.
  • Item
    Optimality Conditions and Moreau-Yosida Regularization for Almost Sure State Constraints
    (Paris : EDP Sciences, 2022) Geiersbach, Caroline; Hintermüller, Michael
    We analyze a potentially risk-averse convex stochastic optimization problem, where the control is deterministic and the state is a Banach-valued essentially bounded random variable. We obtain strong forms of necessary and sufficient optimality conditions for problems subject to equality and conical constraints. We propose a Moreau-Yosida regularization for the conical constraint and show consistency of the optimality conditions for the regularized problem as the regularization parameter is taken to infinity.
  • Item
    Differentiability Properties for Boundary Control of Fluid-Structure Interactions of Linear Elasticity with Navier-Stokes Equations with Mixed-Boundary Conditions in a Channel
    (New York, NY : Springer, 2023) Hintermüller, Michael; Kröner, Axel
    In this paper we consider a fluid-structure interaction problem given by the steady Navier Stokes equations coupled with linear elasticity taken from (Lasiecka et al. in Nonlinear Anal 44:54–85, 2018). An elastic body surrounded by a liquid in a rectangular domain is deformed by the flow which can be controlled by the Dirichlet boundary condition at the inlet. On the walls along the channel homogeneous Dirichlet boundary conditions and on the outflow boundary do-nothing conditions are prescribed. We recall existence results for the nonlinear system from that reference and analyze the control to state mapping generalizing the results of (Wollner and Wick in J Math Fluid Mech 21:34, 2019) to the setting of the nonlinear Navier-Stokes equation for the fluid and the situation of mixed boundary conditions in a domain with corners.
  • Item
    Optimization with learning-informed differential equation constraints and its applications
    (Les Ulis : EDP Sciences, 2022) Dong, Guozhi; Hintermüller, Michael; Papafitsoros, Kostas
    Inspired by applications in optimal control of semilinear elliptic partial differential equations and physics-integrated imaging, differential equation constrained optimization problems with constituents that are only accessible through data-driven techniques are studied. A particular focus is on the analysis and on numerical methods for problems with machine-learned components. For a rather general context, an error analysis is provided, and particular properties resulting from artificial neural network based approximations are addressed. Moreover, for each of the two inspiring applications analytical details are presented and numerical results are provided.
  • Item
    Stability of the solution set of quasi-variational inequalities and optimal control
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Alphonse, Amal; Hintermüller, Michael; Rautenberg, Carlos N.
    For a class of quasivariational inequalities (QVIs) of obstacle-type the stability of its solution set and associated optimal control problems are considered. These optimal control problems are non-standard in the sense that they involve an objective with set-valued arguments. The approach to study the solution stability is based on perturbations of minimal and maximal elements to the solution set of the QVI with respect to monotonic perturbations of the forcing term. It is shown that different assumptions are required for studying decreasing and increasing perturbations and that the optimization problem of interest is well-posed.
  • Item
    Uncertainty quantification in image segmentation using the Ambrosio--Tortorelli approximation of the Mumford--Shah energy
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Hintermüller, Michael; Stengl, Steven-Marian; Surowiec, Thomas M.
    The quantification of uncertainties in image segmentation based on the Mumford-Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio-Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings.
  • Item
    Differentiability properties for boundary control of fluid-structure interactions of linear elasticity with Navier--Stokes equations with mixed-boundary conditions in a channel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Hintermüller, Michael; Kröner, Axel
    In this paper we consider a fluid-structure interaction problem given by the steady Navier Stokes equations coupled with linear elasticity taken from [Lasiecka, Szulc, and Zochoswki, Nonl. Anal.: Real World Appl., 44, 2018]. An elastic body surrounded by a liquid in a rectangular domain is deformed by the flow which can be controlled by the Dirichlet boundary condition at the inlet. On the walls along the channel homogeneous Dirichlet boundary conditions and on the outflow boundary do-nothing conditions are prescribed. We recall existence results for the nonlinear system from that reference and analyze the control to state mapping generaziling the results of [Wollner and Wick, J. Math. Fluid Mech., 21, 2019] to the setting of the nonlinear Navier-Stokes equation for the fluid and the situation of mixed boundary conditions in a domain with corners.
  • Item
    A generalized $Gamma$-convergence concept for a type of equilibrium problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Hintermüller, Michael; Stengl, Steven-Marian
    A novel generalization of Γ-convergence applicable to a class of equilibrium problems is studied. After the introduction of the latter, a variety of its applications is discussed. The existence of equilibria with emphasis on Nash equilibrium problems is investigated. Subsequently, our Γ-convergence notion for equilibrium problems, generalizing the existing one from optimization, is introduced and discussed. The work ends with its application to a class of penalized generalized Nash equilibrium problems and quasi-variational inequalities.