Search Results

Now showing 1 - 10 of 11
  • Item
    Large deviations for the capacity in dynamic spatial relay networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Hirsch, Christian; Jahnel, Benedikt
    We derive a large deviation principle for the space-time evolution of users in a relay network that are unable to connect due to capacity constraints. The users are distributed according to a Poisson point process with increasing intensity in a bounded domain, whereas the relays are positioned deterministically with given limiting density. The preceding work on capacity for relay networks by the authors describes the highly simplified setting where users can only enter but not leave the system. In the present manuscript we study the more realistic situation where users leave the system after a random transmission time. For this we extend the point process techniques developed in the preceding work thereby showing that they are not limited to settings with strong monotonicity properties.
  • Item
    Space-time large deviations in capacity-constrained relay networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Hirsch, Christian; Jahnel, Benedikt; Patterson, Robert
    We consider a single-cell network of random transmitters and fixed relays in a bounded domain of Euclidean space. The transmitters arrive over time and select one relay according to a spatially inhomogeneous preference kernel. Once a transmitter is connected to a relay, the connection remains and the relay is occupied. If an occupied relay is selected by another transmitters with later arrival time, this transmitter becomes frustrated. We derive a large deviation principle for the space-time evolution of frustrated transmitters in the high-density regime.
  • Item
    Lower large deviations for geometric functionals
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hirsch, Christian; Jahnel, Benedikt; Tóbiás, András
    This work develops a methodology for analyzing large-deviation lower tails associated with geometric functionals computed on a homogeneous Poisson point process. The technique applies to characteristics expressed in terms of stabilizing score functions exhibiting suitable monotonicity properties. We apply our results to clique counts in the random geometric graph, intrinsic volumes of Poisson--Voronoi cells, as well as power-weighted edge lengths in the random geometric, κ-nearest neighbor and relative neighborhood graph.
  • Item
    Percolation and connection times in multi-scale dynamic networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Jahnel, Benedikt; Hirsch, Christian; Cali, Eli
    We study the effects of mobility on two crucial characteristics in multi-scale dynamic networks: percolation and connection times. Our analysis provides insights into the question, to what extent long-time averages are well-approximated by the expected values of the corresponding quantities, i.e., the percolation and connection probabilities. In particular, we show that in multi-scale models, strong random effects may persist in the limit. Depending on the precise model choice, these may take the form of a spatial birth-death process or a Brownian motion. Despite the variety of structures that appear in the limit, we show that they can be tackled in a common framework with the potential to be applicable more generally in order to identify limits in dynamic spatial network models going beyond the examples considered in the present work.
  • Item
    Sharp phase transition for Cox percolation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Hirsch, Christian; Jahnel, Benedikt; Muirhead, Stephen
    We prove the sharpness of the percolation phase transition for a class of Cox percolation models, i.e., models of continuum percolation in a random environment. The key requirements are that the environment has a finite range of dependence and satisfies a local boundedness condition, however the FKG inequality need not hold. The proof combines the OSSS inequality with a coarse-graining construction.
  • Item
    Agent-based simulations for coverage extensions in 5G networks and beyond
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Ghribi, Chaima; Cali, Eli; Hirsch, Christian; Jahnel, Benedikt
    Device-to-device (D2D) communications is one of the key emerging technologies for the fifth generation (5G) networks and beyond. It enables direct communication between mobile users and thereby extends coverage for devices lacking direct access to the cellular infrastructure and hence enhances network capacity. D2D networks are complex, highly dynamic and will be strongly augmented by intelligence for decision making at both the edge and core of the network, which makes them particularly difficult to predict and analyze. Conventionally, D2D systems are evaluated, investigated and analyzed using analytical and probabilistic models (e.g., from stochastic geometry). However, applying classical simulation and analytical tools to such a complex system is often hard to track and inaccurate. In this paper, we present a modeling and simulation framework from the perspective of complex-systems science and exhibit an agent-based model for the simulation of D2D coverage extensions. We also present a theoretical study to benchmark our proposed approach for a basic scenario that is less complicated to model mathematically. Our simulation results show that we are indeed able to predict coverage extensions for multi-hop scenarios and quantify the effects of street-system characteristics and pedestrian mobility on the connection time of devices to the base station (BS). To our knowledge, this is the first study that applies agent-based simulations for coverage extensions in D2D.
  • Item
    Bounded-hop percolation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Hirsch, Christian
    Motivated by an application in wireless telecommunication networks, we consider a two-type continuum-percolation problem involving a homogeneous Poisson point process of users and a stationary and ergodic point process of base stations. Starting from a randomly chosen point of the Poisson point process,we investigate distribution of the minimum number of hops that are needed to reach some point of the second point process.In the supercritical regime of continuum percolation, we use the close relationship between Euclidean and chemical distance to identify the distributional limit of the rescaled minimum number of hops that are needed to connect a typical Poisson point to a point of the second point process as its intensity tends to infinity. In particular, we obtain an explicit expression for the asymptotic probability that a typical Poisson point connects to a point of the second point process in a given number of hops.
  • Item
    The typical cell in anisotropic tessellations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Hirsch, Christian; Jahnel, Benedikt; Hinsen, Alexander; Cali, Elie
    The typical cell is a key concept for stochastic-geometry based modeling in communication networks, as it provides a rigorous framework for describing properties of a serving zone associated with a component selected at random in a large network. We consider a setting where network components are located on a large street network. While earlier investigations were restricted to street systems without preferred directions, in this paper we derive the distribution of the typical cell in Manhattan-type systems characterized by a pattern of horizontal and vertical streets. We explain how the mathematical description can be turned into a simulation algorithm and provide numerical results uncovering novel effects when compared to classical isotropic networks.
  • Item
    From heavy-tailed Boolean models to scale-free Gilbert graphs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Hirsch, Christian
    Define the scale-free Gilbert graph based on a Boolean model with heavy-tailed radius distribution on the d-dimensional torus by connecting two centers of balls by an edge if at least one of the balls contains the center of the other. We investigate two asymptotic properties of this graph as the size of the torus tends to infinity. First, we determine the tail index associated with the asymptotic distribution of the sum of all power-weighted incoming and outgoing edge lengths at a randomly chosen vertex. Second, we study the behavior of chemical distances on scale-free Gilbert graphs and show the existence of different regimes depending on the tail index of the radius distribution. Despite some similarities to long-range percolation and ultra-small scale-free geometric networks, scale-free Gilbert graphs are actually more closely related to fractal percolation and this connection gives rise to different scaling limits. We also propose a modification of the graph, where the total number of edges can be reduced substantially at the cost of introducing a logarithmic factor in the chemical distances.
  • Item
    Percolation for D2D networks on street systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Cali, Elie; En-Najjari, Taoufik; Gafur, Nila Novita; Hirsch, Christian; Jahnel, Benedikt; Patterson, Robert I.A.
    We study fundamental characteristics for the connectivity of multi-hop D2D networks. Devices are randomly distributed on street systems and are able to communicate with each other whenever their separation is smaller than some connectivity threshold. We model the street systems as Poisson-Voronoi or Poisson-Delaunay tessellations with varying street lengths. We interpret the existence of adequate D2D connectivity as percolation of the underlying random graph. We derive and compare approximations for the critical device-intensity for percolation, the percolation probability and the graph distance. Our results show that for urban areas, the Poisson Boolean Model gives a very good approximation, while for rural areas, the percolation probability stays far from 1 even far above the percolation threshold.