Search Results

Now showing 1 - 10 of 34
  • Item
    Distribution of Cracks in a Chain of Atoms at Low Temperature
    (Cham (ZG) : Springer International Publishing AG, 2021) Jansen, Sabine; König, Wolfgang; Schmidt, Bernd; Theil, Florian
    We consider a one-dimensional classical many-body system with interaction potential of Lennard–Jones type in the thermodynamic limit at low temperature 1/β∈(0,∞). The ground state is a periodic lattice. We show that when the density is strictly smaller than the density of the ground state lattice, the system with N particles fills space by alternating approximately crystalline domains (clusters) with empty domains (voids) due to cracked bonds. The number of domains is of the order of Nexp(−βesurf/2) with esurf>0 a surface energy. For the proof, the system is mapped to an effective model, which is a low-density lattice gas of defects. The results require conditions on the interactions between defects. We succeed in verifying these conditions for next-nearest neighbor interactions, applying recently derived uniform estimates of correlations.
  • Item
    Surface Energy and Boundary Layers for a Chain of Atoms at Low Temperature
    (Berlin ; Heidelberg : Springer, 2021) Jansen, Sabine; König, Wolfgang; Schmidt, Bernd; Theil, Florian
    We analyze the surface energy and boundary layers for a chain of atoms at low temperature for an interaction potential of Lennard–Jones type. The pressure (stress) is assumed to be small but positive and bounded away from zero, while the temperature β- 1 goes to zero. Our main results are: (1) As β→ ∞ at fixed positive pressure p> 0 , the Gibbs measures μβ and νβ for infinite chains and semi-infinite chains satisfy path large deviations principles. The rate functions are bulk and surface energy functionals E¯ bulk and E¯ surf. The minimizer of the surface functional corresponds to zero temperature boundary layers; (2) The surface correction to the Gibbs free energy converges to the zero temperature surface energy, characterized with the help of the minimum of E¯ surf; (3) The bulk Gibbs measure and Gibbs free energy can be approximated by their Gaussian counterparts; (4) Bounds on the decay of correlations are provided, some of them uniform in β. © 2020, The Author(s).
  • Item
    Moment asymptotics for branching random walks in random environment
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Gün, Onur; König, Wolfgang; Sekulov´c, Ozren
    We consider the long-time behaviour of a branching random walk in random environment on the lattice Zd. The migration of particles proceeds according to simple random walk in continuous time, while the medium is given as a random potential of spatially dependent killing/branching rates. The main objects of our interest are the annealed moments m_np , i.e., the p-th moments over the medium of the n-th moment over the migration and killing/branching, of the local and global population sizes. For n = 1, this is well-understood citeGM98, as m_1 is closely connected with the parabolic Anderson model. For some special distributions, citeA00 extended this to ngeq2, but only as to the first term of the asymptotics, using (a recursive version of) a Feynman-Kac formula for m_n. In this work we derive also the second term of the asymptotics, for a much larger class of distributions. In particular, we show that m_n^p m_1^np are asymptotically equal, up to an error e^o(t). The cornerstone of our method is a direct Feynman-Kac-type formula for mn, which we establish using the spine techniques developed in citeHR1.1
  • Item
    Distribution of cracks in a chain of atoms at low temperature
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Jansen, Sabine; König, Wolfgang; Schmidt, Bernd; Theil, Florian
    We consider a one-dimensional classical many-body system with interaction potential of Lennard--Jones type in the thermodynamic limit at low temperature 1/β ∈ (0, ∞). The ground state is a periodic lattice. We show that when the density is strictly smaller than the density of the ground state lattice, the system with N particles fills space by alternating approximately crystalline domains (clusters) with empty domains (voids) due to cracked bonds. The number of domains is of the order of N exp(-β e surf /2) with e surf > 0 a surface energy.
  • Item
    Large deviations for Brownian intersection measures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) König, Wolfgang; Mukherjee, Chiranjib
    We consider $p$ independent Brownian motions in $R^d$. We assume that $pgeq 2$ and $p(d-2)
  • Item
    Routeing properties in a Gibbsian model for highly dense multihop networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) König, Wolfgang; Tóbiás, András
    We investigate a probabilistic model for routeing in a multihop ad-hoc communication network, where each user sends a message to the base station. Messages travel in hops via the other users, used as relays. Their trajectories are chosen at random according to a Gibbs distribution that favours trajectories with low interference, measured in terms of sum of the signal-to-interference ratios for all the hops, and collections of trajectories with little total congestion, measured in terms of the number of pairs of hops arriving at each relay. This model was introduced in our earlier paper [KT17], where we expressed, in the high-density limit, the distribution of the optimal trajectories as the minimizer of a characteristic variational formula. In the present work, in the special case in which congestion is not penalized, we derive qualitative properties of this minimizer. We encounter and quantify emerging typical pictures in analytic terms in three extreme regimes. We analyze the typical number of hops and the typical length of a hop, and the deviation of the trajectory from the straight line in two regimes, (1) in the limit of a large communication area and large distances, and (2) in the limit of a strong interference weight. In both regimes, the typical trajectory turns out to quickly approach a straight line, in regime (1) with equally-sized hops. Surprisingly, in regime (1), the typical length of a hop diverges logarithmically as the distance of the transmitter to the base station diverges. We further analyze the local and global repulsive effect of (3) a densely populated area on the trajectories. Our findings are illustrated by numerical examples. We also discuss a game-theoretic relation of our Gibbsian model with a joint optimization of message trajectories opposite to a selfish optimization, in case congestion is also penalized.
  • Item
    The parabolic Anderson model on a Galton--Watson tree
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) den Hollander, Frank; König, Wolfgang; Soares dos Santos, Renato
    We study the long-time asymptotics of the total mass of the solution to the parabolic Anderson model ( PAM) on a supercritical Galton-Watson random tree with bounded degrees. We identify the second-order contribution to this asymptotics in terms of a variational formula that gives information about the local structure of the region where the solution is concentrated. The analysis behind this formula suggests that, under mild conditions on the model parameters, concentration takes place on a tree with minimal degree. Our approach can be applied to finite locally tree-like random graphs, in a coupled limit where both time and graph size tend to infinity. As an example, we consider the configuration model or, more precisely, the uniform simple random graph with a prescribed degree sequence.
  • Item
    Eigenvalue order statistics for random Schrödinger operators with doubly-exponential tails
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Biskup, Marek; König, Wolfgang
    We consider random Schrödinger operators of the form Delta+zeta , where D is the lattice Laplacian on Zd and Delta is an i.i.d. random field, and study the extreme order statistics of the eigenvalues for this operator restricted to large but finite subsets of Zd. We show that for sigma with a doubly-exponential type of upper tail, the upper extreme order statistics of the eigenvalues falls into the Gumbel max-order class. The corresponding eigenfunctions are exponentially localized in regions where zeta takes large, and properly arranged, values. A new and self-contained argument is thus provided for Anderson localization at the spectral edge which permits a rather explicit description of the shape of the potential and the eigenfunctions. Our study serves as an input into the analysis of an associated parabolic Anderson problem.
  • Item
    The parabolic Anderson model with acceleration and deceleration
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) König, Wolfgang; Schmidt, Sylvia
    We describe the large-time moment asymptotics for the parabolic Anderson model where the speed of the diffusion is coupled with time, inducing an acceleration or deceleration. We find a lower critical scale, below which the mass flow gets stuck. On this scale, a new interesting variational problem arises in the description of the asymptotics. Furthermore, we find an upper critical scale above which the potential enters the asymptotics only via some average, but not via its extreme values. We make out altogether five phases, three of which can be described by results that are qualitatively similar to those from the constant-speed parabolic Anderson model in earlier work by various authors. Our proofs consist of adaptations and refinements of their methods, as well as a variational convergence method borrowed from finite elements theory.
  • Item
    Connection times in large ad hoc mobile networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Döring, Hanna; Faraud, Gabriel; König, Wolfgang
    We study connectivity properties in a probabilistic model for a large mobile ad-hoc network. We consider a large number of participants of the system moving randomly, independently and identically distributed in a large domain, with a space-dependent population density of finite, positive order and with a fixed time horizon. Messages are instantly transmitted according to a relay principle, i.e., they are iteratedly forwarded from participant to participant over distances 2R, with 2R the communication radius, until they reach the recipient. In mathematical terms, this is a dynamic continuum percolation model. We consider the connection time of two sample participants, the amount of time over which these two are connected with each other. In the above thermodynamic limit, we find that the connectivity induced by the system can be described in terms of the counterplay of a local, random, and a global, deterministic mechanism, and we give a formula for the limiting behaviour. A prime example of the movement schemes that we consider is the well-known random waypoint model (RWP). Here we describe the decay rate, in the limit of large time horizons, of the probability that the portion of the connection time is less than the expectation.