Search Results

Now showing 1 - 2 of 2
  • Item
    Rolled‐Up Self‐Assembly of Compact Magnetic Inductors, Transformers, and Resonators
    (Weinheim : Wiley-VCH Verlag GmbH & Co. KG, 2018-8-17) Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Grafe, Hans‐Joachim; Kataev, Vladislav; Büchner, Bernd; Schmidt, Oliver G.
    3D self-assembly of lithographically patterned ultrathin films opens a path to manufacture microelectronic architectures with functionalities and integration schemes not accessible by conventional 2D technologies. Among other microelectronic components, inductances, transformers, antennas, and resonators often rely on 3D configurations and interactions with electromagnetic fields requiring exponential fabrication efforts when downscaled to the micrometer range. Here, the controlled self-assembly of functional structures is demonstrated. By rolling up ultrathin films into cylindrically shaped microelectronic devices, electromagnetic resonators, inductive and mutually coupled coils are realized. Electrical performance of these devices is improved purely by transformation of a planar into a cylindrical geometry. This is accompanied by an overall downscaling of the device footprint area by more than 50 times. Application of compact self-assembled microstructures has significant impact on electronics, reducing size, fabrication efforts, and offering a wealth of new features in devices by 3D shaping.
  • Item
    Wafer-Scale High-Quality Microtubular Devices Fabricated via Dry-Etching for Optical and Microelectronic Applications
    (Weinheim : Wiley-VCH, 2020) Saggau, Christian N.; Gabler, Felix; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Ma, Libo; Schmidt, Oliver G.
    Mechanical strain formed at the interfaces of thin films has been widely applied to self-assemble 3D microarchitectures. Among them, rolled-up microtubes possess a unique 3D geometry beneficial for working as photonic, electromagnetic, energy storage, and sensing devices. However, the yield and quality of microtubular architectures are often limited by the wet-release of lithographically patterned stacks of thin-film structures. To address the drawbacks of conventionally used wet-etching methods in self-assembly techniques, here a dry-release approach is developed to roll-up both metallic and dielectric, as well as metallic/dielectric hybrid thin films for the fabrication of electronic and optical devices. A silicon thin film sacrificial layer on insulator is etched by dry fluorine chemistry, triggering self-assembly of prestrained nanomembranes in a well-controlled wafer scale fashion. More than 6000 integrated microcapacitors as well as hundreds of active microtubular optical cavities are obtained in a simultaneous self-assembly process. The fabrication of wafer-scale self-assembled microdevices results in high yield, reproducibility, uniformity, and performance, which promise broad applications in microelectronics, photonics, and opto-electronics. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim