Search Results

Now showing 1 - 6 of 6
  • Item
    Digital Electrochemistry for On-Chip Heterogeneous Material Integration
    (Weinheim : Wiley-VCH, 2021) Bao, Bin; Rivkin, Boris; Akbar, Farzin; Karnaushenko, Dmitriy D.; Bandari, Vineeth Kumar; Teuerle, Laura; Becker, Christian; Baunack, Stefan; Karnaushenko, Daniil; Schmidt, Oliver G.
    Many modern electronic applications rely on functional units arranged in an active-matrix integrated on a single chip. The active-matrix allows numerous identical device pixels to be addressed within a single system. However, next-generation electronics requires heterogeneous integration of dissimilar devices, where sensors, actuators, and display pixels sense and interact with the local environment. Heterogeneous material integration allows the reduction of size, increase of functionality, and enhancement of performance; however, it is challenging since front-end fabrication technologies in microelectronics put extremely high demands on materials, fabrication protocols, and processing environments. To overcome the obstacle in heterogeneous material integration, digital electrochemistry is explored here, which site-selectively carries out electrochemical processes to deposit and address electroactive materials within the pixel array. More specifically, an amorphous indium-gallium-zinc oxide (a-IGZO) thin-film-transistor (TFT) active-matrix is used to address pixels within the matrix and locally control electrochemical reactions for material growth and actuation. The digital electrochemistry procedure is studied in-depth by using polypyrrole (PPy) as a model material. Active-matrix-driven multicolored electrochromic patterns and actuator arrays are fabricated to demonstrate the capabilities of this approach for material integration. The approach can be extended to a broad range of materials and structures, opening up a new path for advanced heterogeneous microsystem integration.
  • Item
    Wafer-Scale High-Quality Microtubular Devices Fabricated via Dry-Etching for Optical and Microelectronic Applications
    (Weinheim : Wiley-VCH, 2020) Saggau, Christian N.; Gabler, Felix; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Ma, Libo; Schmidt, Oliver G.
    Mechanical strain formed at the interfaces of thin films has been widely applied to self-assemble 3D microarchitectures. Among them, rolled-up microtubes possess a unique 3D geometry beneficial for working as photonic, electromagnetic, energy storage, and sensing devices. However, the yield and quality of microtubular architectures are often limited by the wet-release of lithographically patterned stacks of thin-film structures. To address the drawbacks of conventionally used wet-etching methods in self-assembly techniques, here a dry-release approach is developed to roll-up both metallic and dielectric, as well as metallic/dielectric hybrid thin films for the fabrication of electronic and optical devices. A silicon thin film sacrificial layer on insulator is etched by dry fluorine chemistry, triggering self-assembly of prestrained nanomembranes in a well-controlled wafer scale fashion. More than 6000 integrated microcapacitors as well as hundreds of active microtubular optical cavities are obtained in a simultaneous self-assembly process. The fabrication of wafer-scale self-assembled microdevices results in high yield, reproducibility, uniformity, and performance, which promise broad applications in microelectronics, photonics, and opto-electronics. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Imperceptible Supercapacitors with High Area-Specific Capacitance
    (Weinheim : Wiley-VCH, 2021) Ge, Jin; Zhu, Minshen; Eisner, Eric; Yin, Yin; Dong, Haiyun; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Zhu, Feng; Ma, Libo; Schmidt, Oliver G.
    Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm—including substrate, electrode, and electrolyte—and an area-specific capacitance of 36 mF cm−2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.
  • Item
    Impedimetric Microfluidic Sensor-in-a-Tube for Label-Free Immune Cell Analysis
    (Weinheim : Wiley-VCH, 2021) Egunov, Aleksandr I.; Dou, Zehua; Karnaushenko, Dmitriy D.; Hebenstreit, Franziska; Kretschmann, Nicole; Akgün, Katja; Ziemssen, Tjalf; Karnaushenko, Daniil; Medina-Sánchez, Mariana; Schmidt, Oliver G.
    Analytical platforms based on impedance spectroscopy are promising for non-invasive and label-free analysis of single cells as well as of their extracellular matrix, being essential to understand cell function in the presence of certain diseases. Here, an innovative rolled-up impedimetric microfulidic sensor, called sensor-in-a-tube, is introduced for the simultaneous analysis of single human monocytes CD14+ and their extracellular medium upon liposaccharides (LPS)-mediated activation. In particular, rolled-up platinum microelectrodes are integrated within for the static and dynamic (in-flow) detection of cells and their surrounding medium (containing expressed cytokines) over an excitation frequency range from 102 to 5 × 106 Hz. The correspondence between cell activation stages and the electrical properties of the cell surrounding medium have been detected by electrical impedance spectroscopy in dynamic mode without employing electrode surface functionalization or labeling. The designed sensor-in-a-tube platform is shown as a sensitive and reliable tool for precise single cell analysis toward immune-deficient diseases diagnosis.
  • Item
    Mechanical Characterization of Compact Rolled-up Microtubes Using In Situ Scanning Electron Microscopy Nanoindentation and Finite Element Analysis
    (Weinheim : Wiley-VCH, 2021) Moradi, Somayeh; Jöhrmann, Nathanael; Karnaushenko, Dmitriy D.; Zschenderlein, Uwe; Karnaushenko, Daniil; Wunderle, Bernhard; Schmidt, Oliver G.
    Self-assembled Swiss-roll microstructures (SRMs) are widely explored to build up microelectronic devices such as capacitors, transistors, or inductors as well as sensors and lab-in-a-tube systems. These devices often need to be transferred to a special position on a microchip or printed circuit board for the final application. Such a device transfer is typically conducted by a pick-and-place process exerting enormous mechanical loads onto the 3D components that may cause catastrophic failure of the device. Herein, the mechanical deformation behavior of SRMs using experiments and simulations is investigated. SRMs using in situ scanning electron microscopy (SEM) combined with nanoindentation are characterized. This allows us to mimic and characterize mechanical loads as they occur in a pick-and-place process. The deformation response of SRMs depends on three geometrical factors, i.e., the number of windings, compactness of consecutive windings, and inner diameter of the microtube. Nonlinear finite element analysis (FEA) showing good agreement with experiments is performed. It is believed that the insights into the mechanical loading of 3D self-assembled architectures will lead to novel techniques suitable for a new generation of pick-and-place machines operating at the microscale. © 2021 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH
  • Item
    A Patternable and In Situ Formed Polymeric Zinc Blanket for a Reversible Zinc Anode in a Skin-Mountable Microbattery
    (Weinheim : Wiley-VCH, 2021) Zhu, Minshen; Hu, Junping; Lu, Qiongqiong; Dong, Haiyun; Karnaushenko, Dmitriy D.; Becker, Christian; Karnaushenko, Daniil; Li, Yang; Tang, Hongmei; Qu, Zhe; Ge, Jin; Schmidt, Oliver G.
    Owing to their high safety and reversibility, aqueous microbatteries using zinc anodes and an acid electrolyte have emerged as promising candidates for wearable electronics. However, a critical limitation that prevents implementing zinc chemistry at the microscale lies in its spontaneous corrosion in an acidic electrolyte that causes a capacity loss of 40% after a ten-hour rest. Widespread anti-corrosion techniques, such as polymer coating, often retard the kinetics of zinc plating/stripping and lack spatial control at the microscale. Here, a polyimide coating that resolves this dilemma is reported. The coating prevents corrosion and hence reduces the capacity loss of a standby microbattery to 10%. The coordination of carbonyl oxygen in the polyimide with zinc ions builds up over cycling, creating a zinc blanket that minimizes the concentration gradient through the electrode/electrolyte interface and thus allows for fast kinetics and low plating/stripping overpotential. The polyimide's patternable feature energizes microbatteries in both aqueous and hydrogel electrolytes, delivering a supercapacitor-level rate performance and 400 stable cycles in the hydrogel electrolyte. Moreover, the microbattery is able to be attached to human skin and offers strong resistance to deformations, splashing, and external shock. The skin-mountable microbattery demonstrates an excellent combination of anti-corrosion, reversibility, and durability in wearables. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH