Search Results

Now showing 1 - 3 of 3
  • Item
    Machine learning for additive manufacturing: Predicting materials characteristics and their uncertainty
    (Amsterdam [u.a.] : Elsevier Science, 2023) Chernyavsky, Dmitry; Kononenko, Denys Y.; Han, Jun Hee; Kim, Hwi Jun; van den Brink, Jeroen; Kosiba, Konrad
    Additive manufacturing (AM) is known for versatile fabrication of complex parts, while also allowing the synthesis of materials with desired microstructures and resulting properties. These benefits come at a cost: process control to manufacture parts within given specifications is very challenging due to the relevance of a large number of processing parameters. Efficient predictive machine learning (ML) models trained on small datasets, can minimize this cost. They also allow to assess the quality of the dataset inclusive of uncertainty. This is important in order for additively manufactured parts to meet property specifications not only on average, but also within a given variance or uncertainty. Here, we demonstrate this strategy by developing a heteroscedastic Gaussian process (HGP) model, from a dataset based on laser powder bed fusion of a glass-forming alloy at varying processing parameters. Using amorphicity as the microstructural descriptor, we train the model on our Zr52.5Cu17.9Ni14.6Al10Ti5 (at.%) alloy dataset. The HGP model not only accurately predicts the mean value of amorphicity, but also provides the respective uncertainty. The quantification of the aleatoric and epistemic uncertainty contributions allows to assess intrinsic inaccuracies of the dataset, as well as identify underlying physical phenomena. This HGP model approach enables to systematically improve ML-driven AM processes.
  • Item
    Temperature-dependent dynamic compressive properties and failure mechanisms of the additively manufactured CoCrFeMnNi high entropy alloy
    (Oxford : Elsevier Science, 2022) Chen, Hongyu; Liu, Yang; Wang, Yonggang; Li, Zhiguo; Wang, Di; Kosiba, Konrad
    CoCrFeMnNi high entropy alloy (HEA) parts were fabricated by laser powder bed fusion (LPBF), and their dynamic compressive properties at different temperatures as well as the resulting microstructures were analyzed. The HEAs showed an unprecedented strength-ductility combination, especially at a cryogenic temperature of 77 K and a high strain rate of 3000 s−1. Under this testing condition, the yield strength (YS) of the HEAs amounted to 665 MPa. Regardless of the testing temperature, the deformation mechanism of all investigated HEAs was dominated by a synergistic effect consisting of deformation twinning and dislocation pile-up around twins. The fraction of twin boundaries and dislocation density within the deformed microstructure of the HEA correlated with the test temperature. At 77 K, the formation of nanotwins together with dislocation slip prevailed and contributed to pronounced twin-twin and twin-dislocation interactions which effectively restricted the dislocation movement and, hence, contributed to a higher YS as well as strain hardening rate in comparison to that of the HEAs at room temperature of 298 K. The LPBF-fabricated HEAs showed unpronounced thermal softening even at a high testing temperature of 1073 K. Continuous dynamic recrystallization was restricted in the HEA because of its inherent sluggish dislocation kinetics and low stacking fault energy.
  • Item
    Laser powder bed fusion of Fe60(CoCrNiMn)40 medium-entropy alloy with excellent strength-ductility balance
    (Amsterdam [u.a.] : Elsevier Science, 2024) Yang, Shengze; Liu, Yang; Chen, Hongyu; Wang, Yonggang; Kosiba, Konrad
    In this study, Fe60(CoCrNiMn)40 medium-entropy alloy (MEA) was fabricated by laser powder bed fusion (LPBF) via mixing of pure Fe and FeCoCrNiMn powders, the processability, microstructure and mechanical properties were systematically investigated, and the mechanism of strengthening and toughening were revealed through combination of experiments and molecular dynamics (MD) simulations. Results show that fraction of BCC phase decreased gradually with increasing volume energy density (VED), and thus heterostructue with varying FCC and BCC phases were produced through regulating the VED. The Fe60(CoCrNiMn)40 MEA (with scanning speeds of 700 and 800 mm/s) showed excellent strength-plasticity balance (e.g. 476 MPa, 612 MPa and 63 %) compared to the equiatomic FeCoCrNiMn HEA, which is ascribed to the synergistic strengthening and toughening effects involving the twinning induced plasticity (TWIP) and the reinforcement caused by the BCC phase (act as reinforced particle) embedded in the FCC matrix.