Search Results

Now showing 1 - 2 of 2
  • Item
    Medical Imaging of Microrobots: Toward In Vivo Applications
    (Washington, DC : American Chemical Society, 2020) Aziz, Azaam; Pane, Stefano; Iacovacci, Veronica; Koukourakis, Nektarios; Czarske, Jürgen; Menciassi, Arianna; Medina-Sánchez, Mariana; Schmidt, Oliver G
    Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.
  • Item
    Real-Time IR Tracking of Single Reflective Micromotors through Scattering Tissues
    (Weinheim : Wiley-VCH, 2019) Aziz, Azaam; Medina-Sánchez, Mariana; Koukourakis, Nektarios; Wang, Jiawei; Kuschmierz, Robert; Radner, Hannes; Czarske, Jürgen W.; Schmidt, Oliver G.
    Medical micromotors have the potential to lead to a paradigm shift in future biomedicine, as they may perform active drug delivery, microsurgery, tissue engineering, or assisted fertilization in a minimally invasive manner. However, the translation to clinical treatment is challenging, as many applications of single or few micromotors require real-time tracking and control at high spatiotemporal resolution in deep tissue. Although optical techniques are a popular choice for this task, absorption and strong light scattering lead to a pronounced decrease of the signal-to-noise ratio with increasing penetration depth. Here, a highly reflective micromotor is introduced which reflects more than tenfold the light intensity of simple gold particles and can be precisely navigated by external magnetic fields. A customized optical IR imaging setup and an image correlation technique are implemented to track single micromotors in real-time and label-free underneath phantom and ex vivo mouse skull tissues. As a potential application, the micromotors speed is recorded when moving through different viscous fluids to determine the viscosity of diverse physiological fluids toward remote cardiovascular disease diagnosis. Moreover, the micromotors are loaded with a model drug to demonstrate their cargo-transport capability. The proposed reflective micromotor is suitable as theranostic tool for sub-skin or organ-on-a-chip applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.