Search Results

Now showing 1 - 7 of 7
  • Item
    Do researchers need to care about PID systems?
    (Zenodo, 2018) Kraft, Angelina; Dreyer, Britta
    A survey across 1400 scientists in the natural sciences and engineering across Germany conducted in 2016 revealed that although more than 70 % of the researchers are using DOIs for journal publications, less than 10% use DOIs for research data. To the question of why they are not using DOIs more than half (56%) answered that they don’t know about the option to use DOIs for other publications (datasets, conference papers etc.) Therefore it is not surprising that the majority (57 %) stated that they had no need for DOI counselling services. 40% of the questioned researchers need more information and almost 30% cannot see a benefit. Publishers have been using PID systems for articles for years, and the DOI registration and citation are a natural part of the standard publication workflow. With the new digital age, the possibilities to publishing digital research objects beyond articles are bigger than ever – but the respective infrastructure providers are still struggling to provide integrated PID services. Infrastructure providers need to learn from publishers and offer integrated PID services, complementing existing workflows, using researcher’s vocabulary to support usability and promotion. Sell the benefit and enable researchers to focus on what they are best at: Do research (and not worry about the rest)!
  • Item
    Moving towards FAIRness in Research Data and Software Management
    (Meyrin : CERN, 2020-07-03) Kraft, Angelina
    Presentation during the Thüringer FDM Tage 2020 within the workshop "FAIR Research Software and Beyond: How to make the most of your code".
  • Item
    The ATMODAT Standard enhances FAIRness of Atmospheric Model data
    (Washington, DC : ESSOAr, 2020) Heydebreck, Daniel; Kaiser, Amandine; Ganske, Anette; Kraft, Angelina; Schluenzen, Heinke; Voss, Vivien
    Within the AtMoDat project (Atmospheric Model Data, www.atmodat.de), a standard has been developed which is meant for improving the FAIRness of atmospheric model data published in repositories. Atmospheric model data form the basis to understand and predict natural events, including atmospheric circulation, local air quality patterns, and the planetary energy budget. Such data should be made available for evaluation and reuse by scientists, the public sector, and relevant stakeholders. Atmospheric modeling is ahead of other fields in many regards towards FAIR (Findable, Accessible, Interoperable, Reusable, see e.g. Wilkinson et al. (2016, doi:10.1101/418376)) data: many models write their output directly into netCDF or file formats that can be converted into netCDF. NetCDF is a non-proprietary, binary, and self-describing format, ensuring interoperability and facilitating reusability. Nevertheless, consistent human- and machine-readable standards for discipline-specific metadata are also necessary. While standardisation of file structure and metadata (e.g. the Climate and Forecast Conventions) is well established for some subdomains of the earth system modeling community (e.g. the Coupled Model Intercomparison Project, Juckes et al. (2020, https:doi.org/10.5194/gmd-13-201-2020)), other subdomains are still lacking such standardisation. For example, standardisation is not well advanced for obstacle-resolving atmospheric models (e.g. for urban-scale modeling). The ATMODAT standard, which will be presented here, includes concrete recommendations related to the maturity, publication, and enhanced FAIRness of atmospheric model data. The suggestions include requirements for rich metadata with controlled vocabularies, structured landing pages, file formats (netCDF), and the structure within files. Human- and machine-readable landing pages are a core element of this standard and should hold and present discipline-specific metadata on simulation and variable level.
  • Item
    RADAR – Repositorium und Publikations-Service für Forschungsdaten
    (Hannover : Technische Informationsbibliothek, 2016) Kraft, Angelina; Razum, Matthias; Lange, Frank
    [no abstract available]
  • Item
    Making the Maturity of Data and Metadata Visible with Datacite DOIs
    (Washington, DC : ESSOAr, 2020) Kaiser, Amandine; Heydebreck, Daniel; Ganske, Anette; Kraft, Angelina
    Data maturity describes the degree of the formalisation/standardisation of a data object with respect to FAIRness and quality of the (meta-) data. Therefore, a high (meta-) data maturity increases the reusability of data. Moreover, it is an important topic in data management, which is reflected by a growing number of tools and theories trying to measure it, e.g. the FAIR testing tools assessed by RDA(1) or the NOAA maturity matrix(2). If the results of stewardship tasks cannot be shown directly in the metadata, reusers of data cannot easily recognise which data is easy to reuse. For example, the DataCite Metadata Schema does not provide an explicit property to link/store information on data maturity (e.g. FAIRness or quality of data/metadata). The AtMoDat project (3, Atmospheric Model Data) aims to improve the reusability of published atmospheric model data by scientists, the public sector, companies, and other stakeholders. These data are valuable because they form the basis to understand and predict natural events, including the atmospheric circulation and ultimately the atmospheric and planetary energy budget. As most atmospheric data has been published with DataCite DOIs, it is of high importance that the maturity of the datasets can be easily found in the DOI’s Metadata. Published data from other fields of research would also benefit from easily findable maturity information. Therefore, we developed a Maturity Indicator concept and propose to introduce it as a new property in the DataCite Metadata Schema. This indicator is generic and independent of any scientific discipline and data stewardship tool. Hence, it can be used in a variety of research fields. 1 https://doi.org/10.15497/RDA00034 2 Peng et al., 2015: https://doi.org/10.2481/dsj.14-049 3 www.atmodat.de
  • Item
    AtMoDat: Improving the reusability of ATmospheric MOdel DATa with DataCite DOIs paving the path towards FAIR data
    (München : European Geosciences Union, 2020) Neumann, Daniel; Ganske, Anette; Voss, Vivien; Kraft, Angelina; Höck, Heinke; Peters, Karsten; Quaas, Johannes; Schluenzen, Heinke; Thiemann, Hannes
    The generation of high quality research data is expensive. The FAIR principles were established to foster the reuse of such data for the benefit of the scientific community and beyond. Publishing research data with metadata and DataCite DOIs in public repositories makes them findable and accessible (FA of FAIR). However, DOIs and basic metadata do not guarantee the data are actually reusable without discipline-specific knowledge: if data are saved in proprietary or undocumented file formats, if detailed discipline-specific metadata are missing and if quality information on the data and metadata are not provided. In this contribution, we present ongoing work in the AtMoDat project, -a consortium of atmospheric scientists and infrastructure providers, which aims on improving the reusability of atmospheric model data. Consistent standards are necessary to simplify the reuse of research data. Although standardization of file structure and metadata is well established for some subdomains of the earth system modeling community – e.g. CMIP –, several other subdomains are lacking such standardization. Hence, scientists from the Universities of Hamburg and Leipzig and infrastructure operators cooperate in the AtMoDat project in order to advance standardization for model output files in specific subdomains of the atmospheric modeling community. Starting from the demanding CMIP6 standard, the aim is to establish an easy-to-use standard that is at least compliant with the Climate and Forecast (CF) conventions. In parallel, an existing netCDF file convention checker is extended to check for the new standards. This enhanced checker is designed to support the creation of compliant files and thus lower the hurdle for data producers to comply with the new standard. The transfer of this approach to further sub-disciplines of the earth system modeling community will be supported by a best-practice guide and other documentation. A showcase of a standard for the urban atmospheric modeling community will be presented in this session. The standard is based on CF Conventions and adapts several global attributes and controlled vocabularies from the well-established CMIP6 standard. Additionally, the AtMoDat project aims on introducing a generic quality indicator into the DataCite metadata schema to foster further reuse of data. This quality indicator should require a discipline-specific implementation of a quality standard linked to the indicator. We will present the concept of the generic quality indicator in general and in the context of urban atmospheric modeling data.
  • Item
    RADAR - A repository for long tail data
    (2015) Kraft, Angelina; Neumann, Janna
    The way knowledge is shared is experiencing a paradigm shift: Digital networks allow new degrees of openness for research and its resources, accompanied by a huge potential for scientists, inventors, industry and the general public. Accessible data will allow all groups to participate in innovation and value creation regardless of their geographical location or individual background. However, for researchers who are evaluated by their academic performance and scientific excellence, there is a fine balance between benefits and concerns regarding the openness of resources such as knowledge and data. With the Research Data Repository (RADAR) project we provide solutions to maintain this balance: In RADAR, an interdisciplinary infrastructure for the preservation, publication, creditability and traceability of research data from the fields of the 'long tail of science' is developed. Here we present the first RADAR prototype: A robust, generic end-point data repository which enables clients to preserve research results up to 15 years and assign well-graded access rights, or to publish and preserve data with a DOI assignment for an unlimited period of time. Potential clients include libraries, research institutions, publishers and open platforms which require an adaptable digital infrastructure to archive and publish data according to their institutional needs and workflows. In a nutshell, RADAR can help clients to handle following issues: - Secure storage of research data. - Preservation of information after a project is completed, a grant ends or employees leave. - Traceable and citable data publication across communities via a discipline-agnostic metadata scheme. - Ensuring that data are ‘stable’ after publication e.g. to allow accurate comparisons later. - Provision of data management services for their customers up front while using RADAR as a back-end system.