Search Results

Now showing 1 - 7 of 7
  • Item
    Base Neutralizing Capacity of Agricultural Soils in a Quaternary Landscape of North-East Germany and Its Relationship to Best Management Practices in Lime Requirement Determination
    (Basel : MDPI AG, 2020) Vogel, Sebastian; Bönecke, Eric; Kling, Charlotte; Kramer, Eckart; Lück, Katrin; Nagel, Anne; Philipp, Golo; Rühlmann, Jörg; Schröter, Ingmar; Gebbers, Robin
    Despite being a natural soil-forming process, soil acidification is a major agronomic challenge under humid climate conditions, as soil acidity influences several yield-relevant soil properties. It can be counterbalanced by the regular application of agricultural lime to maintain or re-establish soil fertility and to optimize plant growth and yield. To avoid underdose as well as overdose, lime rates need to be calculated carefully. The lime rate should be determined by the optimum soil pH (target pH) and the response of the soil to lime, which is described by the base neutralizing capacity (BNC). Several methods exist to determine the lime requirement (LR) to raise the soil pH to its optimum. They range from extremely time-consuming equilibration methods, which mimic the natural processes in the soil, to quick tests, which rely on some approximations and are designed to provide farmers with timely and cost-efficient data. Due to the higher analytical efforts, only limited information is available on the real BNC of particular soils. In the present paper, we report the BNC of 420 topsoil samples from Central Europe (north-east Germany), developed on sediments from the last ice age 10,000 years ago under Holocene conditions. These soils are predominantly sandy and low in humus, but they exhibit a huge spatial variability in soil properties on a small scale. The BNC was determined by adding various concentrations of Ca(OH)2 and fitting an exponential model to derive a titration curve for each sample. The coefficients of the BNC titration curve were well correlated with soil properties affecting soil acidity and pH buffer capacity, i.e., pH, soil texture and soil organic matter (SOM). From the BNC model, the LRs (LRBNC) were derived and compared with LRVDLUFA based on the standard protocol in Germany as established by the Association of German Agricultural Analytic and Research Institutes (VDLUFA). The LRBNC and LRVDLUFA correlated well but the LRVDLUFA were generally by approximately one order of magnitude higher. This is partly due to the VDLUFA concept to recommend a maintenance or conservation liming, even though the pH value is in the optimum range, to keep it there until the next lime application during the following rotation. Furthermore, the VDLUFA method was primarily developed from field experiments where natural soil acidification and management practices depressed the effect of lime treatment. The BNC method, on the other hand, is solely based on laboratory analysis with standardized soil samples. This indicates the demand for further research to develop a sound scientific algorithm that complements LRBNC with realistic values of annual Ca2+ removal and acidification by natural processes and N fertilization.
  • Item
    Proximal Soil Sensing - A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?
    (San Francisco, California, US : PLOS, 2016) Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens
    Background: Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Methodology/Principal Findings: Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Conclusions/Significance: Our findings suggest that PSS contributes to the spatial modelling of earthworm abundances at field scale and that it will support species distribution modelling in the attempt to understand the soil-earthworm relationships in agroecosystems.
  • Item
    Effects of Interrow Maintenance on Microclimate Parameters in Black Currant (Ribes nigrum L.)
    (Berlin ; Heidelberg [u.a.] : SpringerOpen, 2022) Nagler, Linda; Schwefler, Jana; Käthner, Jana; Giebel, Antje; Kramer, Eckart
    The aim of the study was to determine the influence of tramline maintenance frequency on air temperature and relative humidity in blackcurrant (Ribes nigrum) plantations. In practice, keeping tramline vegetation short serves as an applied and preventative technique to improve aeration in the crop and reduce disease pressure. The on-farm trials took place on two ecological shrub berry farms in Brandenburg (Weggun and Schöneiche) over a period from March to June 2021. The effects of maintenance frequency on the microclimate in the tramlines were determined for normal mowing frequency (business as usual, BAU) and increased mowing frequency (TEST). The results show that continuous short keeping of the tramlines has a demonstrable influence on the air temperature and humidity in the currant stand. In some cases, an increased mowing frequency (TEST) led to a significantly higher mean air temperature than under usual management (BAU), whereas the mean relative humidity was significantly lower. The effects were dependent on timing and site. Over the experimental period, maximum mean air temperature differences of 1.14 °C (Weggun site) and 1.96 °C (Schöneiche site) and maximum mean relative humidity differences of 3.69% (Weggun site) and 3.90% (Schöneiche site) were observed between the TEST and BAU variants. Especially in the plantation with the smaller row distance, this effect occurs more clearly. The results suggest that the plantation structure has an influence on these effects, which should be investigated in further trials.
  • Item
    Direct prediction of site-specific lime requirement of arable fields using the base neutralizing capacity and a multi-sensor platform for on-the-go soil mapping
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021-7-26) Vogel, Sebastian; Bönecke, Eric; Kling, Charlotte; Kramer, Eckart; Lück, Katrin; Philipp, Golo; Rühlmann, Jörg; Schröter, Ingmar; Gebbers, Robin
    Liming agricultural fields is necessary for counteracting soil acidity and is one of the oldest operations in soil fertility management. However, the best management practice for liming in Germany only insufficiently considers within-field soil variability. Thus, a site-specific variable rate liming strategy was developed and tested on nine agricultural fields in a quaternary landscape of north-east Germany. It is based on the use of a proximal soil sensing module using potentiometric, geoelectric and optical sensors that have been found to be proxies for soil pH, texture and soil organic matter (SOM), which are the most relevant lime requirement (LR) affecting soil parameters. These were compared to laboratory LR analysis of reference soil samples using the soil’s base neutralizing capacity (BNC). Sensor data fusion utilizing stepwise multi-variate linear regression (MLR) analysis was used to predict BNC-based LR (LRBNC) for each field. The MLR models achieved high adjusted R2 values between 0.70 and 0.91 and low RMSE values from 65 to 204 kg CaCO3 ha−1. In comparison to univariate modeling, MLR models improved prediction by 3 to 27% with 9% improvement on average. The relative importance of covariates in the field-specific prediction models were quantified by computing standardized regression coefficients (SRC). The importance of covariates varied between fields, which emphasizes the necessity of a field-specific calibration of proximal sensor data. However, soil pH was the most important parameter for LR determination of the soils studied. Geostatistical semivariance analysis revealed differences between fields in the spatial variability of LRBNC. The sill-to-range ratio (SRR) was used to quantify and compare spatial LRBNC variability of the nine test fields. Finally, high resolution LR maps were generated. The BNC-based LR method also produces negative LR values for soil samples with pH values above which lime is required. Hence, the LR maps additionally provide an estimate on the quantity of chemically acidifying fertilizers that can be applied to obtain an optimal soil pH value.
  • Item
    Guidelines for precise lime management based on high-resolution soil pH, texture and SOM maps generated from proximal soil sensing data
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Bönecke, Eric; Meyer, Sven; Vogel, Sebastian; Schröter, Ingmar; Gebbers, Robin; Kling, Charlotte; Kramer, Eckart; Lück, Katrin; Nagel, Anne; Philipp, Golo; Gerlach, Felix; Palme, Stefan; Scheibe, Dirk; Zieger, Karin; Rühlmann, Jörg
    Soil acidification is caused by natural paedogenetic processes and anthropogenic impacts but can be counteracted by regular lime application. Although sensors and applicators for variable-rate liming (VRL) exist, there are no established strategies for using these tools or helping to implement VRL in practice. Therefore, this study aimed to provide guidelines for site-specific liming based on proximal soil sensing. First, high-resolution soil maps of the liming-relevant indicators (pH, soil texture and soil organic matter content) were generated using on-the-go sensors. The soil acidity was predicted by two ion-selective antimony electrodes (RMSEpH: 0.37); the soil texture was predicted by a combination of apparent electrical resistivity measurements and natural soil-borne gamma emissions (RMSEclay: 0.046 kg kg−1); and the soil organic matter (SOM) status was predicted by a combination of red (660 nm) and near-infrared (NIR, 970 nm) optical reflection measurements (RMSESOM: 6.4 g kg−1). Second, to address the high within-field soil variability (pH varied by 2.9 units, clay content by 0.44 kg kg−1 and SOM by 5.5 g kg−1), a well-established empirical lime recommendation algorithm that represents the best management practices for liming in Germany was adapted, and the lime requirements (LRs) were determined. The generated workflow was applied to a 25.6 ha test field in north-eastern Germany, and the variable LR was compared to the conventional uniform LR. The comparison showed that under the uniform liming approach, 63% of the field would be over-fertilized by approximately 12 t of lime, 6% would receive approximately 6 t too little lime and 31% would still be adequately limed. © 2020, The Author(s).
  • Item
    Soil pH mapping with an on-the-go sensor
    (Basel : MDPI, 2011) Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan
    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH ManagerTM, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH ManagerTM under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH ManagerTM were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r2) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany.
  • Item
    Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing
    (Basel : MDPI AG, 2019) Vogel, Sebastian; Gebbers, Robin; Oertel, Marcel; Kramer, Eckart
    On a grassland field with sandy soils in Northeast Germany (Brandenburg), vegetation indices from multi-spectral UAV-based remote sensing were used to predict grassland biomass productivity. These data were combined with soil pH value and apparent electrical conductivity (ECa) from on-the-go proximal sensing serving as indicators for soil-borne causes of grassland biomass variation. The field internal magnitude of spatial variability and hidden correlations between the variables of investigation were analyzed by means of geostatistics and boundary-line analysis to elucidate the influence of soil pH and ECa on the spatial distribution of biomass. Biomass and pH showed high spatial variability, which necessitates high resolution data acquisition of soil and plant properties. Moreover, boundary-line analysis showed grassland biomass maxima at pH values between 5.3 and 7.2 and ECa values between 3.5 and 17.5 mS m−1. After calibrating ECa to soil moisture, the ECa optimum was translated to a range of optimum soil moisture from 7% to 13%. This matches well with to the plant-available water content of the predominantly sandy soil as derived from its water retention curve. These results can be used in site-specific management decisions to improve grassland biomass productivity in low-yield regions of the field due to soil acidity or texture-related water scarcity.