Search Results

Now showing 1 - 3 of 3
  • Item
    How Price-Based Frequency Regulation Impacts Stability in Power Grids: A Complex Network Perspective
    (London : Hindawi, 2020) Ji, Peng; Zhu, Lipeng; Lu, Chao; Lin, Wei; Kurths, Jürgen
    With the deregulation of modern power grids, electricity markets are playing a more and more important role in power grid operation and control. However, it is still questionable how the real-time electricity price-based operation affects power grid stability. From a complex network perspective, here we investigate the dynamical interactions between price-based frequency regulations and physical networks, which results in an interesting finding that a local minimum of network stability occurs when the response strength of generators/consumers to the varying price increases. A case study of the real world-based China Southern Power Grid demonstrates the finding and exhibits a feasible approach to network stability enhancement in smart grids. This also provides guidance for potential upgrade and expansion of the current power grids in a cleaner and safer way. © 2020 Peng Ji et al.
  • Item
    Fast-Slow-Scale Interaction Induced Parallel Resonance and its Suppression in Voltage Source Converters
    (New York, NY : IEEE, 2021) Ma, Rui; Qiu, Qi; Kurths, Jürgen; Zhan, Meng
    Multi-timescale interaction of power electronics devices, including voltage source converter (VSC), has made the stability and analysis of high penetrating renewable power systems very complicated. In this paper, the impedance model is used to analyze the multi-timescale characteristics and interaction of the VSC. Firstly, the multi-timescale impedance characteristics of VSC are investigated based on the Bode plots. It is found that the slow-timescale (within the DC-link voltage control scale) and fast-timescale (within the AC current control scale) models are separately consistent with the full-order model perfectly within their low- and high-frequency ranges. In addition, there exists a high impedance peak within the intermediate frequency range (roughly from 10 Hz to 100 Hz). Then, the impedance peak is theoretically estimated and explained by the slow-fast-scale impedance parallel resonance through transfer-function diagram analysis. Moreover, it is found that the impedance peak is more related to some outer controllers, such as the alternative voltage control and active power control. Specifically, larger proportional coefficients can greatly suppress the resonance peak. Finally, simulations and experiments are conducted to verify the generality of the multi-timescale characteristics and interaction of the VSC. Hence these findings are not only significant to provide a physical insight into the inner key structure of the impedance of VSC, but also expected to be helpful for controller and parameter design of the VSC.
  • Item
    Fixed-Time Connectivity Preserving Tracking Consensus of Multiagent Systems with Disturbances
    (London : Hindawi, 2020) Sun, Fenglan; Liu, Peiyong; Kurths, Jürgen; Zhu, Wei
    This text studies the fixed-time tracking consensus for nonlinear multiagent systems with disturbances. To make the fixed-time tracking consensus, the distributed control protocol based on the integral sliding mode control is proposed; meanwhile, the adjacent followers can be maintained in a limited sensing range. By using the nonsmooth analysis method, sufficient conditions for the fixed-time consensus together with the upper and lower bounds of convergence time are obtained. An example is given to illustrate the potential correctness of the main results. © 2020 Fenglan Sun et al.