Search Results

Now showing 1 - 4 of 4
  • Item
    Measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank energy
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Lasarzik, Robert
    In this article, we prove the existence of measure-valued solutions to the EricksenLeslie system equipped with the OseenFrank energy. We introduce the concept of generalized gradient Young measures. Via a Galerkin approximation, we show the existence of weak solutions to a regularized system and attain measure-valued solutions for vanishing regularization. Additionally, it is shown that the measure-valued solution fulfills an energy inequality.
  • Item
    Weak-strong uniqueness for measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank free energy
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Lasarzik, Robert
    We analyze the EricksenLeslie system equipped with the OseenFrank energy in three space dimensions. Recently, the author introduced the concept of measure-valued solutions to this system and showed the global existence of these generalized solutions. In this paper, we show that suitable measure-valued solutions, which fulfill an associated energy inequality, enjoy the weak-strong uniqueness property, i. e. the measure-valued solution agrees with a strong solution if the latter exists. The weak-strong uniqueness is shown by a relative energy inequality for the associated nonconvex energy functional.
  • Item
    Approximation and optimal control of dissipative solutions to the Ericksen-Leslie system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Lasarzik, Robert
    We analyze the EricksenLeslie system equipped with the OseenFrank energy in three space dimensions. Recently, the author introduced the concept of dissipative solutions. These solutions show several advantages in comparison to the earlier introduced measure-valued solutions. In this article, we argue that dissipative solutions can be numerically approximated by a relative simple scheme, which fulfills the norm-restriction on the director in every step. We introduce a semi-discrete scheme and derive an approximated version of the relative-energy inequality for solutions of this scheme. Passing to the limit in the semi-discretization, we attain dissipative solutions. Additionally, we introduce an optimal control scheme, show the existence of an optimal control and a possible approximation strategy. We prove that the cost functional is lower semi-continuous with respect to the convergence of this approximation and argue that an optimal control is attained in the case that there exists a solution admitting additional regularity.
  • Item
    Dissipative solution to the Ericksen-Leslie system equipped with the Oseen-Frank energy
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Lasarzik, Robert
    We analyze the EricksenLeslie system equipped with the OseenFrank energy in three space dimensions. The new concept of dissipative solutions is introduced. Recently, the author introduced the concept of measure-valued solutions to the considered system and showed global existence as well as weak-strong uniqueness of these generalized solutions. In this paper, we show that the expectation of the measure valued solution is a dissipative solution. The concept of a dissipative solution itself relies on an inequality instead of an equality, but is described by functions instead of parametrized measures. These solutions exist globally and fulfill the weak-strong uniqueness property. Additionally, we generalize the relative energy inequality to solutions fulfilling different nonhomogeneous Dirichlet boundary conditions and incorporate the influence of a temporarily constant electromagnetic field. Relying on this generalized energy inequality, we investigate the long-time behavior and show that all solutions converge for the large time limit to a certain steady state.