Search Results

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Item

2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes

2016, Chiatti, Olivio, Riha, Christian, Lawrenz, Dominic, Busch, Marco, Dusari, Srujana, Sánchez-Barriga, Jaime, Mogilatenko, Anna, Yashina, Lada V., Valencia, Sergio, Ünal, Akin A., Rader, Oliver, Fischer, Saskia F.

Low-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼1019 cm−3) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction. However, in the metallic-like case this analysis fails and additional two-dimensional contributions need to be accounted for. Shubnikov-de Haas oscillations and quantized Hall resistance prove as strong indications for the two-dimensional layered metallic behavior. Temperature-dependent magnetotransport properties of high-quality Bi2Se3 single crystalline exfoliated macro and micro flakes are combined with high resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy, confirming the structure and stoichiometry. Angle-resolved photoemission spectroscopy proves a single-Dirac-cone surface state and a well-defined bulk band gap in topological insulating state. Spatially resolved core-level photoelectron microscopy demonstrates the surface stability.