Search Results

Now showing 1 - 10 of 10
  • Item
    Lasing by Template-Assisted Self-Assembled Quantum Dots
    (Weinheim : Wiley-VCH, 2023) Aftenieva, Olha; Sudzius, Markas; Prudnikau, Anatol; Adnan, Mohammad; Sarkar, Swagato; Lesnyak, Vladimir; Leo, Karl; Fery, Andreas; König, Tobias A.F.
    Miniaturized laser sources with low threshold power are required for integrated photonic devices. Photostable core/shell nanocrystals are well suited as gain material and their laser properties can be exploited by direct patterning as distributed feedback (DFB) lasers. Here, the 2nd-order DFB resonators tuned to the photoluminescence wavelength of the QDs are used. Soft lithography based on template-assisted colloidal self-assembly enables pattern resolution in the subwavelength range. Combined with the directional Langmuir–Blodgett arrangement, control of the waveguide layer thickness is further achieved. It is shown that a lasing threshold of 5.5 mJ cm−2 is reached by a direct printing method, which can be further reduced by a factor of ten (0.6 mJ cm−2) at an optimal waveguide thickness. Moreover, it is discussed how one can adjust the DFB geometries to any working wavelength. This colloidal approach offers prospects for applications in bioimaging, biomedical sensing, anti-counterfeiting, or displays.
  • Item
    Unraveling Structure and Device Operation of Organic Permeable Base Transistors
    (Weinheim : Wiley-VCH, 2020) Darbandy, Ghader; Dollinger, Felix; Formánek, Petr; Hübner, René; Resch, Stefan; Roemer, Christian; Fischer, Axel; Leo, Karl; Kloes, Alexander; Kleemann, Hans
    Organic permeable base transistors (OPBTs) are of great interest for flexible electronic circuits, as they offer very large on-current density and a record-high transition frequency. They rely on a vertical device architecture with current transport through native pinholes in a central base electrode. This study investigates the impact of pinhole density and pinhole diameter on the DC device performance in OPBTs based on experimental data and TCAD simulation results. A pinhole density of NPin = 54 µm−2 and pinhole diameters around LPin = 15 nm are found in the devices. Simulations show that a variation of pinhole diameter and density around these numbers has only a minor impact on the DC device characteristics. A variation of the pinhole diameter and density by up to 100% lead to a deviation of less than 4% in threshold voltage, on/off current ratio, and sub-threshold slope. Hence, the fabrication of OPBTs with reliable device characteristics is possible regardless of statistical deviations in thin film formation. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    New charge-transfer states in blends of ZnPC with F8ZnPC
    (College Park, ML : American Institute of Physics, 2021) Graf, Lukas; Ortstein, Katrin; Doctor, Louis P.; Naumann, Marco; Beyer, Jan; Heitmann, Johannes; Leo, Karl; Knupfer, Martin
    With the aim of pushing the knowledge and understanding on mixed films of organic semiconductors forward, blends of ZnPC and F8ZnPC in different ratios are manufactured. The films have a polycrystalline structure, as indicated by electron diffraction profiles and infrared-spectroscopy. Photoluminescence data show completely different spectra for the blends, compared to the pure materials, which can be ascribed to the suppressing of excimer formation and the appearance of a new charge-transfer excitation between the two different molecules in the blends. This new excitation can also be seen in optical absorption. Momentum dependent measurements of the electronic excitations by electron energy-loss spectroscopy confirm the localized character of the new charge-transfer excitation in the blends. Our experimental data help understand the important issue of donor/acceptor coupling in organic semiconductors.
  • Item
    Colloidal PbS nanoplatelets synthesized via cation exchange for electronic applications
    (Cambridge : RSC Publ., 2019) Sonntag, Luisa; Shamraienko, Volodymyr; Fan, Xuelin; Samadi Khoshkhoo, Mahdi; Kneppe, David; Koitzsch, Andreas; Gemming, Thomas; Hiekel, Karl; Leo, Karl; Lesnyak, Vladimir; Eychmüller, Alexander
    In this work, we present a new synthetic approach to colloidal PbS nanoplatelets (NPLs) utilizing a cation exchange (CE) strategy starting from CuS NPLs synthesized via the hot-injection method. Whereas the thickness of the resulting CuS NPLs was fixed at approx. 5 nm, the lateral size could be tuned by varying the reaction conditions, such as time from 6 to 16 h, the reaction temperature (120 °C, 140 °C), and the amount of copper precursor. In a second step, Cu+ cations were replaced with Pb2+ ions within the crystal lattice via CE. While the shape and the size of parental CuS platelets were preserved, the crystal structure was rearranged from hexagonal covellite to PbS galena, accompanied by the fragmentation of the monocrystalline phase into polycrystalline one. Afterwards a halide mediated ligand exchange (LE) was carried out in order to remove insulating oleic acid residues from the PbS NPL surface and to form stable dispersions in polar organic solvents enabling thin-film fabrication. Both CE and LE processes were monitored by several characterization techniques. Furthermore, we measured the electrical conductivity of the resulting PbS NPL-based films before and after LE and compared the processing in ambient to inert atmosphere. Finally, we fabricated field-effect transistors with an on/off ratio of up to 60 and linear charge carrier mobility for holes of 0.02 cm2 V−1 s−1.
  • Item
    Operation mechanism of high performance organic permeable base transistors with an insulated and perforated base electrode
    (Melville, NY : American Inst. of Physics, 2016) Kaschura, Felix; Fischer, Axel; Klinger, Markus P.; Doan, Duy Hai; Koprucki, Thomas; Glitzky, Annegret; Kasemann, Daniel; Widmer, Johannes; Leo, Karl
    The organic permeable base transistor is a vertical transistor architecture that enables high performance while maintaining a simple low-resolution fabrication. It has been argued that the charge transport through the nano-sized openings of the central base electrode limits the performance. Here, we demonstrate by using 3D drift-diffusion simulations that this is not the case in the relevant operation range. At low current densities, the applied base potential controls the number of charges that can pass through an opening and the opening is the current limiting factor. However, at higher current densities, charges accumulate within the openings and in front of the base insulation, allowing for an efficient lateral transport of charges towards the next opening. The on-state in the current-voltage characteristics reaches the maximum possible current given by space charge limited current transport through the intrinsic semiconductor layers. Thus, even a small effective area of the openings can drive huge current densities, and further device optimization has to focus on reducing the intrinsic layer thickness to a minimum.
  • Item
    Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors
    ([London] : Nature Publishing Group UK, 2021) Kublitski, Jonas; Fischer, Axel; Xing, Shen; Baisinger, Lukasz; Bittrich, Eva; Spoltore, Donato; Benduhn, Johannes; Vandewal, Koen; Leo, Karl
    Detection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at −10 V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices.
  • Item
    Vertical organic permeable dual-base transistors for logic circuits
    ([London] : Nature Publishing Group UK, 2020) Guo, Erjuan; Wu, Zhongbin; Darbandy, Ghader; Xing, Shen; Wang, Shu-Jen; Tahn, Alexander; Göbel, Michael; Kloes, Alexander; Leo, Karl; Kleemann, Hans
    The main advantage of organic transistors with dual gates/bases is that the threshold voltages can be set as a function of the applied second gate/base bias, which is crucial for the application in logic gates and integrated circuits. However, incorporating a dual gate/base structure into an ultra-short channel vertical architecture represents a substantial challenge. Here, we realize a device concept of vertical organic permeable dual-base transistors, where the dual base electrodes can be used to tune the threshold voltages and change the on-currents. The detailed operation mechanisms are investigated by calibrated TCAD simulations. Finally, power-efficient logic circuits, e.g. inverter, NAND/AND computation functions are demonstrated with one single device operating at supply voltages of <2.0 V. We believe that this work offers a compact and technologically simple hardware platform with excellent application potential for vertical-channel organic transistors in complex logic circuits.
  • Item
    Reduced Intrinsic Non-Radiative Losses Allow Room-Temperature Triplet Emission from Purely Organic Emitters
    (Weinheim : Wiley-VCH, 2021) Li, Yungui; Jiang, Lihui; Liu, Wenlan; Xu, Shunqi; Li, Tian-Yi; Fries, Felix; Zeika, Olaf; Zou, Yingping; Ramanan, Charusheela; Lenk, Simone; Scholz, Reinhard; Andrienko, Denis; Feng, Xinliang; Leo, Karl; Reineke, Sebastian
    Persistent luminescence from triplet excitons in organic molecules is rare, as fast non-radiative deactivation typically dominates over radiative transitions. This work demonstrates that the substitution of a hydrogen atom in a derivative of phenanthroimidazole with an N-phenyl ring can substantially stabilize the excited state. This stabilization converts an organic material without phosphorescence emission into a molecular system exhibiting efficient and ultralong afterglow phosphorescence at room temperature. Results from systematic photophysical investigations, kinetic modeling, excited-state dynamic modeling, and single-crystal structure analysis identify that the long-lived triplets originate from a reduction of intrinsic non-radiative molecular relaxations. Further modification of the N-phenyl ring with halogen atoms affects the afterglow lifetime and quantum yield. As a proof-of-concept, an anticounterfeiting device is demonstrated with a time-dependent Morse code feature for data encryption based on these emitters. A fundamental design principle is outlined to achieve long-lived and emissive triplet states by suppressing intrinsic non-radiative relaxations in the form of molecular vibrations or rotations.
  • Item
    Directed exciton transport highways in organic semiconductors
    ([London] : Nature Publishing Group UK, 2023) Müller, Kai; Schellhammer, Karl S.; Gräßler, Nico; Debnath, Bipasha; Liu, Fupin; Krupskaya, Yulia; Leo, Karl; Knupfer, Martin; Ortmann, Frank
    Exciton bandwidths and exciton transport are difficult to control by material design. We showcase the intriguing excitonic properties in an organic semiconductor material with specifically tailored functional groups, in which extremely broad exciton bands in the near-infrared-visible part of the electromagnetic spectrum are observed by electron energy loss spectroscopy and theoretically explained by a close contact between tightly packing molecules and by their strong interactions. This is induced by the donor–acceptor type molecular structure and its resulting crystal packing, which induces a remarkable anisotropy that should lead to a strongly directed transport of excitons. The observations and detailed understanding of the results yield blueprints for the design of molecular structures in which similar molecular features might be used to further explore the tunability of excitonic bands and pave a way for organic materials with strongly enhanced transport and built-in control of the propagation direction.
  • Item
    Highly efficient modulation doping: A path toward superior organic thermoelectric devices
    (Washington, DC [u.a.] : Assoc., 2022) Wang, Shu-Jen; Panhans, Michel; Lashkov, Ilia; Kleemann, Hans; Caglieris, Federico; Becker-Koch, David; Vahland, Jörn; Guo, Erjuan; Huang, Shiyu; Krupskaya, Yulia; Vaynzof, Yana; Büchner, Bernd; Ortmann, Frank; Leo, Karl
    We investigate the charge and thermoelectric transport in modulation-doped large-area rubrene thin-film crystals with different crystal phases. We show that modulation doping allows achieving superior doping efficiencies even for high doping densities, when conventional bulk doping runs into the reserve regime. Modulation-doped orthorhombic rubrene achieves much improved thermoelectric power factors, exceeding 20 μW m−1 K−2 at 80°C. Theoretical studies give insight into the energy landscape of the heterostructures and its influence on qualitative trends of the Seebeck coefficient. Our results show that modulation doping together with high-mobility crystalline organic semiconductor films is a previosly unexplored strategy for achieving high-performance organic thermoelectrics.