Search Results

Now showing 1 - 8 of 8
  • Item
    Quinoidal Azaacenes: 99 % Diradical Character
    (Weinheim : Wiley-VCH Verlag, 2020) Intorp, S.N.; Hodecker, M.; Müller, M.; Tverskoy, O.; Rosenkranz, M.; Dmitrieva, E.; Popov, A.A.; Rominger, F.; Freudenberg, J.; Dreuw, A.; Bunz, U.H.F.
    Quinoidal azaacenes with almost pure diradical character (y=0.95 to y=0.99) were synthesized. All compounds exhibit paramagnetic behavior investigated by EPR and NMR spectroscopy, and SQUID measurements, revealing thermally populated triplet states with an extremely low-energy gap ΔEST′ of 0.58 to 1.0 kcal mol−1. The species are persistent in solution (half-life≈14–21 h) and in the solid state they are stable for weeks.
  • Item
    The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design
    (München : European Geopyhsical Union, 2014) Tjernström, M.; Leck, C.; Birch, C.E.; Bottenheim, J.W.; Brooks, B.J.; Brooks, I.M.; Bäcklin, L.; Chang, R.Y.-W.; de Leeuw, G.; Di Liberto, L.; de la Rosa, S.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; Johnston, P.; Knulst, J.; Martin, M.; Matrai, P.A.; Mauritsen, T.; Müller, M.; Norris, S.J.; Orellana, M.V.; Orsini, D.A.; Paatero, J.; Persson, P.O.G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M.D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C.R.
    The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol–cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007–2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.
  • Item
    Characterization of Silicon Crystals Grown from Melt in a Granulate Crucible
    (Warrendale, Pa : TMS, 2020) Dadzis, K.; Menzel, R.; Juda, U.; Irmscher, K.; Kranert, C.; Müller, M.; Ehrl, M.; Weingärtner, R.; Reimann, C.; Abrosimov, N.; Riemann, H.
    The growth of silicon crystals from a melt contained in a granulate crucible significantly differs from the classical growth techniques because of the granulate feedstock and the continuous growth process. We performed a systematic study of impurities and structural defects in several such crystals with diameters up to 60 mm. The possible origin of various defects is discussed and attributed to feedstock (concentration of transition metals), growth setup (carbon concentration), or growth process (dislocation density), showing the potential for further optimization. A distinct correlation between crystal defects and bulk carrier lifetime is observed. A bulk carrier lifetime with values up to 600 μs on passivated surfaces of dislocation-free parts of the crystal is currently achieved.
  • Item
    Nanoscale mechanical surface properties of single crystalline martensitic Ni-Mn-Ga ferromagnetic shape memory alloys
    (Bristol : IOP, 2012) Jakob, A.M.; Müller, M.; Rauschenbach, B.; Mayr, S.G.
    Located beyond the resolution limit of nanoindentation, contact resonance atomic force microscopy (CR-AFM) is employed for nano-mechanical surface characterization of single crystalline 14M modulated martensitic Ni-Mn-Ga (NMG) thin films grown by magnetron sputter deposition on (001) MgO substrates. Comparing experimental indentation moduli-obtained with CR-AFM-with theoretical predictions based on density functional theory (DFT) indicates the central role of pseudo plasticity and inter-martensitic phase transitions. Spatially highly resolved mechanical imaging enables the visualization of twin boundaries and allows for the assessment of their impact on mechanical behavior at the nanoscale. The CR-AFM technique is also briefly reviewed. Its advantages and drawbacks are carefully addressed.
  • Item
    Interaction between immobilized polyelectrolyte complex nanoparticles and human mesenchymal stromal cells
    (Auckland : DOVE Medical Press, 2014) Woltmann, B.; Torger, B.; Müller, M.; Hempel, U.
    Background: Implant loosening or deficient osseointegration is a major problem in patients with systemic bone diseases (eg, osteoporosis). For this reason, the stimulation of the regional cell population by local and sustained drug delivery at the bone/implant interface to induce the formation of a mechanical stable bone is promising. The purpose of this study was to investigate the interaction of polymer-based nanoparticles with human bone marrow-derived cells, considering nanoparticles' composition and surface net charge. Materials and methods: Polyelectrolyte complex nanoparticles (PECNPs) composed of the polycations poly(ethyleneimine) (PEI), poly(L-lysine) (PLL), or (N,N-diethylamino)ethyldextran (DEAE) in combination with the polyanions dextran sulfate (DS) or cellulose sulfate (CS) were prepared. PECNPs' physicochemical properties (size, net charge) were characterized by dynamic light scattering and particle charge detector measurements. Biocompatibility was investigated using human mesenchymal stromal cells (hMSCs) cultured on immobilized PECNP films (5-50 nmol·cm-2) by analysis for metabolic activity of hMSCs in dependence of PECNP surface concentration by MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt) assay, as well as cell morphology (phase contrast microscopy). Results: PECNPs ranging between ~50 nm and 150 nm were prepared. By varying the ratio of polycations and polyanions, PECNPs with a slightly positive (PEC+NP) or negative (PEC-NP) net charge were obtained. The PECNP composition significantly affected cell morphology and metabolic activity, whereas the net charge had a negligible influence. Therefore, we classified PECNPs into "variant systems" featuring a significant dose dependency of metabolic activity (DEAE/CS, PEI/DS) and "invariant systems" lacking such a dependency (DEAE/DS, PEI/CS). Immunofluorescence imaging of fluorescein isothiocyanate isomer I (FITC)-labeled PECNPs suggested internalization into hMSCs remaining stable for 8 days. Conclusion: Our study demonstrated that PECNP composition affects hMSC behavior. In particular, the PEI/CS system showed biocompatibility in a wide concentration range, representing a suitable system for local drug delivery from PECNP-functionalized bone substitute materials.
  • Item
    Polar stratospheric cloud observations by MIPAS on ENVISAT: Detection method, validation and analysis of the northern hemisphere winter 2002/2003
    (München : European Geopyhsical Union, 2005) Spang, R.; Remedios, J.J.; Kramer, L.J.; Poole, L.R.; Fromm, M.D.; Müller, M.; Baumgarten, G.; Konopka, P.
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT has made extensive measurements of polar stratospheric clouds (PSCs) in the northern hemisphere winter 2002/2003. A PSC detection method based on a ratio of radiances (the cloud index) has been implemented for MIPAS and is validated in this study with respect to ground-based lidar and space borne occultation measurements. A very good correspondence in PSC sighting and cloud altitude between MIPAS detections and those of other instruments is found for cloud index values of less than four. Comparisons with data from the Stratospheric Aerosol and Gas Experiment (SAGE) III are used to further show that the sensitivity of the MIPAS detection method for this threshold value of cloud index is approximately equivalent to an extinction limit of 10-3km-1 at 1022nm, a wavelength used by solar occultation experiments. The MIPAS cloud index data are subsequently used to examine, for the first time with any technique, the evolution of PSCs throughout the Arctic polar vortex up to a latitude close to 90° north on a near-daily basis. We find that the winter of 2002/2003 is characterised by three phases of very different PSC activity. First, an unusual, extremely cold phase in the first three weeks of December resulted in high PSC occurrence rates. This was followed by a second phase of only moderate PSC activity from 5-13 January, separated from the first phase by a minor warming event. Finally there was a third phase from February to the end of March where only sporadic and mostly weak PSC events took place. The composition of PSCs during the winter period has also been examined, exploiting in particular an infra-red spectral signature which is probably characteristic of NAT. The MIPAS observations show the presence of these particles on a number of occasions in December but very rarely in January. The PSC type differentiation from MIPAS indicates that future comparisons of PSC observations with microphysical and denitrification models might be revealing about aspects of solid particle existence and location.
  • Item
    Repeated exposure of the oral mucosa over 12 months with cold plasma is not carcinogenic in mice
    (London : Nature Publishing Group, 2021) Evert, K.; Kocher, T.; Schindler, A.; Müller, M.; Müller, K.; Pink, C.; Holtfreter, B.; Schmidt, A.; Dombrowski, F.; Schubert, A.; von Woedtke, T.; Rupf, S.; Calvisi, D. F.; Bekeschus, S.; Jablonowski, L.
    Peri-implantitis may result in the loss of dental implants. Cold atmospheric pressure plasma (CAP) was suggested to promote re-osseointegration, decrease antimicrobial burden, and support wound healing. However, the long-term risk assessment of CAP treatment in the oral cavity has not been addressed. Treatment with two different CAP devices was compared against UV radiation, carcinogen administration, and untreated conditions over 12 months. Histological analysis of 406 animals revealed that repeated CAP exposure did not foster non-invasive lesions or squamous cell carcinoma (SCCs). Carcinogen administration promoted non-invasive lesions and SCCs. Molecular analysis by a qPCR screening of 144 transcripts revealed distinct inflammatory profiles associated with each treatment regimen. Interestingly, CAP treatment of carcinogen-challenged mucosa did not promote but instead left unchanged or reduced the proportion of non-invasive lesions and SCC formation. In conclusion, repeated CAP exposure of murine oral mucosa was well tolerated, and carcinogenic effects did not occur, motivating CAP applications in patients for dental and implant treatments in the future.
  • Item
    Polyelectrolyte complex nanoparticles of poly(ethyleneimine) and poly(acrylic acid): Preparation and applications
    (Basel : MDPI AG, 2011) Müller, M.; Keßler, B.; Fröhlich, J.; Poeschla, S.; Torger, B.
    In this contribution we outline polyelectrolyte (PEL) complex (PEC) nanoparticles, prepared by mixing solutions of the low cost PEL components poly(ethyleneimine) (PEI) and poly(acrylic acid) (PAC). It was found, that the size and internal structure of PEI/PAC particles can be regulated by process, media and structural parameters. Especially, mixing order, mixing ratio, PEL concentration, pH and molecular weight, were found to be sensible parameters to regulate the size (diameter) of spherical PEI/PAC nanoparticles, in the range between 80-1,000 nm, in a defined way. Finally, applications of dispersed PEI/PAC particles as additives for the paper making process, as well as for drug delivery, are outlined. PEI/PAC nanoparticles mixed directly on model cellulose film showed a higher adsorption level applying the mixing order 1. PAC 2. PEI compared to 1. PEI 2. PAC. Surface bound PEI/PAC nanoparticles were found to release a model drug compound and to stay immobilized due to the contact with the aqueous release medium.