Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Influence of the carrier reservoir dimensionality on electron-electron scattering in quantum dot materials

2013, Wilms, Alexander, Mathé, Peter, Schulze, Franz, Koprucki, Thomas, Knorr, Andreas, Bandelow, Uwe

We calculated Coulomb scattering rates from quantum dots (QDs) coupled to a 2D carrier reservoir and QDs coupled to a 3D reservoir. For this purpose, we used a microscopic theory in the limit of Born-Markov approximation, in which the numerical evaluation of high dimensional integrals is done via a quasi-Monte Carlo method. Via a comparison of the so determined scattering rates, we investigated the question whether scattering from 2D is generally more efficient than scattering from 3D. In agreement with experimental findings, we did not observe a significant reduction of the scattering efficiency of a QD directly coupled to a 3D reservoir. In turn, we found that 3D scattering benefits from it’s additional degree of freedom in the momentum space

Loading...
Thumbnail Image
Item

A new perspective on the propagation-separation approach: Taking advantage of the propagation condition

2013, Becker, Saskia, Mathé, Peter

The Propagation-Separation approach is an iterative procedure for pointwise estimation of local constant and local polynomial functions. The estimator is defined as a weighted mean of the observations with data-driven weights. Within homogeneous regions it ensures a similar behavior as non-adaptive smoothing (propagation), while avoiding smoothing among distinct regions (separation). In order to enable a proof of stability of estimates, the authors of the original study introduced an additional memory step aggregating the estimators of the successive iteration steps. Here, we study theoretical properties of the simplified algorithm, where the memory step is omitted. In particular, we introduce a new strategy for the choice of the adaptation parameter yielding propagation and stability for local constant functions with sharp discontinuities

Loading...
Thumbnail Image
Item

Calibration methods for gas turbine performance models

2016, Borchardt, Jürgen, Mathé, Peter, Printsypar, Galina

The WIAS software package BOP is used to simulate gas turbine models. In order to make accurate predictions the underlying models need to be calibrated. This study compares different strategies of model calibration. These are the deterministic optimization tools as nonlinear least squares (MSO) and the sparsity promoting variant LASSO, but also the probabilistic (Bayesian) calibration. The latter allows for the quantification of the inherent uncertainty, and it gives rise to a surrogate uncertainty measure in the MSO tool. The implementation details are accompanied with a numerical case study, which highlights the advantages and drawbacks of each of the proposed calibration methods.

Loading...
Thumbnail Image
Item

Sharp converse results for the regularization error using distance functions

2010, Flemming, Jens, Hofmann, Bernd, Mathé, Peter

In the analysis of ill-posed inverse problems the impact of solution smoothness on accuracy and convergence rates plays an important role. For linear ill-posed operator equations in Hilbert spaces and with focus on the linear regularization schema we will establish relations between the different kinds of measuring solution smoothness in a point-wise or integral manner. In particular we discuss the interplay of distribution functions, profile functions that express the regularization error, index functions generating source conditions, and distance functions associated with benchmark source conditions. We show that typically the distance functions and the profile functions carry the same information as the distribution functions, and that this is not the case for general source conditions. The theoretical findings are accompanied with examples exhibiting applications and limitations of the approach