Search Results

Now showing 1 - 10 of 21
Loading...
Thumbnail Image
Item

A pressure-robust discretization of Oseen's equation using stabilization in the vorticity equation

2020, Ahmed, Naveed, Barrenechea, Gabriel R., Burman, Erik, Guzmán, Johnny, Linke, Alexander, Merdon, Christian

Discretization of Navier--Stokes' equations using pressure-robust finite element methods is considered for the high Reynolds number regime. To counter oscillations due to dominating convection we add a stabilization based on a bulk term in the form of a residual-based least squares stabilization of the vorticity equation supplemented by a penalty term on (certain components of) the gradient jump over the elements faces. Since the stabilization is based on the vorticity equation, it is independent of the pressure gradients, which makes it pressure-robust. Thus, we prove pressureindependent error estimates in the linearized case, known as Oseen's problem. In fact, we prove an O(hk+1/2) error estimate in the L2-norm that is known to be the best that can be expected for this type of problem. Numerical examples are provided that, in addition to confirming the theoretical results, show that the present method compares favorably to the classical residual-based SUPG stabilization.

Loading...
Thumbnail Image
Item

A gradient-robust well-balanced scheme for the compressible isothermal Stokes problem

2019, Akbas, Mine, Gallouët, Thierry, Gaßmann, Almut, Linke, Alexander, Merdon, Christian

A novel notion for constructing a well-balanced scheme --- a gradient-robust scheme --- is introduced and a showcase application for a steady compressible, isothermal Stokes equations is presented. Gradient-robustness means that arbitrary gradient fields in the momentum balance are well-balanced by the discrete pressure gradient --- if there is enough mass in the system to compensate the force. The scheme is asymptotic-preserving in the sense that it degenerates for low Mach numbers to a recent inf-sup stable and pressure-robust discretization for the incompressible Stokes equations. The convergence of the coupled FEM-FVM scheme for the nonlinear, isothermal Stokes equations is proved by compactness arguments. Numerical examples illustrate the numerical analysis, and show that the novel approach can lead to a dramatically increased accuracy in nearly-hydrostatic low Mach number flows. Numerical examples also suggest that a straight-forward extension to barotropic situations with nonlinear equations of state is feasible.

Loading...
Thumbnail Image
Item

Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements

2016, Lederer, Philip L., Linke, Alexander, Merdon, Christian, Schöberl, Joachim

Classical inf-sup stable mixed finite elements for the incompressible (Navier-)Stokes equations are not pressure-robust, i.e., their velocity errors depend on the continuous pressure. However, a modification only in the right hand side of a Stokes discretization is able to reestablish pressure-robustness, as shown recently for several inf-sup stable Stokes elements with discontinuous discrete pressures. In this contribution, this idea is extended to low and high order Taylor-Hood and mini elements, which have continuous discrete pressures. For the modification of the right hand side a velocity reconstruction operator is constructed that maps discretely divergence-free test functions to exactly divergence-free ones. The reconstruction is based on local H (div)-conforming flux equilibration on vertex patches, and fulfills certain orthogonality properties to provide consistency and optimal a-priori error estimates. Numerical examples for the incompressible Stokes and Navier-Stokes equations confirm that the new pressure-robust Taylor-Hood and mini elements converge with optimal order and outperform significantly the classical versions of those elements when the continuous pressure is comparably large.

Loading...
Thumbnail Image
Item

Guaranteed error control for the pseudostress approximation of the Stokes equations

2015, Bringmann, Philipp, Carstensen, Carsten, Merdon, Christian

The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H (div) and the velocity in L2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g. the Raviart-Thomas discretization which is related to the Crouzeix-Raviart nonconforming finite element scheme in the lowest-order case. The effective and guaranteed a posteriori error control for this nonconforming velocity-oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf-sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy.

Loading...
Thumbnail Image
Item

Aspects of quaranteed error control in CPDEs

2013, Carstensen, Carsten, Merdon, Christian, Neumann, Johannes

Whenever numerical algorithms are employed for a reliable computational forecast, they need to allow for an error control in the final quantity of interest. The discretisation error control is of some particular importance in computational PDEs (CPDEs) where guaranteed upper error bounds (GUB) are of vital relevance. After a quick overview over energy norm error control in second-order elliptic PDEs, this paper focuses on three particular aspects. First, the variational crimes from a nonconforming finite element discretisation and guaranteed error bounds in the discrete norm with improved postprocessing of the GUB. Second, the reliable approximation of the discretisation error on curved boundaries and, finally, the reliable bounds of the error with respect to some goal-functional, namely, the error in the approximation of the directional derivative at a given point

Loading...
Thumbnail Image
Item

On the divergence constraint in mixed finite element methods for incompressible flows

2015, John, Volker, Linke, Alexander, Merdon, Christian, Neilan, Michael, Rebholz, Leo G.

The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which in fluences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This paper reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using non-robust discretizations and the improvements obtained by utilizing pressure-robust discretizations.

Loading...
Thumbnail Image
Item

Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem

2020, Frerichs, Derk, Merdon, Christian

Non divergence-free discretisations for the incompressible Stokes problem may suffer from a lack of pressure-robustness characterised by large discretisations errors due to irrotational forces in the momentum balance. This paper argues that also divergence-free virtual element methods (VEM) on polygonal meshes are not really pressure-robust as long as the right-hand side is not discretised in a careful manner. To be able to evaluate the right-hand side for the testfunctions, some explicit interpolation of the virtual testfunctions is needed that can be evaluated pointwise everywhere. The standard discretisation via an L2 -bestapproximation does not preserve the divergence and so destroys the orthogonality between divergence-free testfunctions and possibly eminent gradient forces in the right-hand side. To repair this orthogonality and restore pressure-robustness another divergence-preserving reconstruction is suggested based on Raviart--Thomas approximations on local subtriangulations of the polygons. All findings are proven theoretically and are demonstrated numerically in two dimensions. The construction is also interesting for hybrid high-order methods on polygonal or polyhedral meshes.

Loading...
Thumbnail Image
Item

Guaranteed upper bounds for the velocity error of pressure-robust Stokes discretisations

2020, Lederer, Philip Lukas, Merdon, Christian

This paper improves guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e. for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager-Synge type result relates the errors of divergence-free primal and H(div)-conforming dual mixed methods (for the velocity gradient) with an equilibration constraint that needs special care when discretised. To relax the constraints on the primal and dual method, a more general result is derived that enables the use of a recently developed mass conserving mixed stress discretisation to design equilibrated fluxes that yield pressure-independent guaranteed upper bounds for any pressure-robust (but not necessarily divergence-free) primal discretisation. Moreover, a provably efficient local design of the equilibrated fluxes is presented that reduces the numerical costs of the error estimator. All theoretical findings are verified by numerical examples which also show that the efficiency indices of our novel guaranteed upper bounds for the velocity error are close to 1.

Loading...
Thumbnail Image
Item

A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes

2020, Apel, Thomas, Kempf, Volker, Linke, Alexander, Merdon, Christian

Most classical finite element schemes for the (Navier--)Stokes equations are neither pressure-robust, nor are they inf-sup stable on general anisotropic triangulations. A lack of pressure-robustness may lead to large velocity errors, whenever the Stokes momentum balance is dominated by a strong and complicated pressure gradient. It is a consequence of a method, which does not exactly satisfy the divergence constraint. However, inf-sup stable schemes can often be made pressure-robust just by a recent, modified discretization of the exterior forcing term, using H(div)-conforming velocity reconstruction operators. This approach has so far only been analyzed on shape-regular triangulations. The novelty of the present contribution is that the reconstruction approach for the Crouzeix--Raviart method, which has a stable Fortin operator on arbitrary meshes, is combined with results on the interpolation error on anisotropic elements for reconstruction operators of Raviart--Thomas and Brezzi--Douglas--Marini type, generalizing the method to a large class of anisotropic triangulations. Numerical examples confirm the theoretical results in a 2D and a 3D test case.

Loading...
Thumbnail Image
Item

On spurious oscillations due to irrotational forces in the Navier-Stokes momentum balance

2015, Linke, Alexander, Merdon, Christian

This contribution studies the in uence of the pressure on the velocity error in finite element discretisations of the Navier-Stokes equations. Three simple benchmark problems that are all close to real-world applications convey that the pressure can be comparably large and is not to be underestimated. For widely used finite element methods like the Taylor-Hood finite element method, such relatively large pressures can lead to spurious oscillations and arbitrarily large errors in the velocity, even if the exact velocity is in the ansatz space. Only mixed finite element methods, whose velocity error is pressure-independent, like the Scott-Vogelius finite element method can avoid this influence.