Search Results

Now showing 1 - 6 of 6
  • Item
    Optimal control for the thermistor problem
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Hömberg, Dietmar; Meyer, Christian; Rehberg, Joachim; Ring, Wolfgang
    This paper is concerned with the state-constrained optimal control of the two-dimensional thermistor problem, a quasi-linear coupled system of a parabolic and elliptic PDE with mixed boundary conditions. This system models the heating of a conducting material by means of direct current. Existence, uniqueness and continuity for the state system are derived by employing maximal elliptic and parabolic regularity. By similar arguments the linearized state system is discussed, while the adjoint system involving measures is investigated using a duality argument. These results allow to derive first-order necessary conditions for the optimal control problem.
  • Item
    A priori error analysis for state constrained boundary control problems : Part II: Full discretization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Krumbiegel, Klaus; Meyer, Christian; Rösch, Arnd
    This is the second of two papers concerned with a state-constrained optimal control problems with boundary control, where the state constraints are only imposed in an interior subdomain. We apply the virtual control concept introduced in [26] to regularize the problem. The arising regularized optimal control problem is discretized by finite elements and linear and continuous ansatz functions for the boundary control. In the first part of the work, we investigate the errors induced by the regularization and the discretization of the boundary control. The second part deals with the error arising from discretization of the PDE. Since the state constraints only appear in an inner subdomain, the obtained order of convergence exceeds the known results in the field of a priori analysis for state-constrained problems. The theoretical results are illustrated by numerical computations.
  • Item
    A priori error analysis for state constrained boundary control problems : Part I: Control discretization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Krumbiegel, Klaus; Meyer, Christian; Rösch, Arnd
    This is the first of two papers concerned with a state-constrained optimal control problems with boundary control, where the state constraints are only imposed in an interior subdomain. We apply the virtual control concept introduced in [20] to regularize the problem. The arising regularized optimal control problem is discretized by finite elements and linear and continuous ansatz functions for the boundary control. In the first part of the work, we investigate the errors induced by the regularization and the discretization of the boundary control. The second part deals with the error arising from discretization of the PDE. Since the state constraints only appear in an inner subdomain, the obtained order of convergence exceeds the known results in the field of a priori analysis for state-constrained problems
  • Item
    Optimal control of static plasticity with linear kinematic hardening
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Griesse, Roland; Meyer, Christian
    An optimal control problem for the static problem of infinitesimal elastoplasticity with linear kinematic hardening is considered. The variational inequality arising on the lower-level is regularized using a Yosida-type approach, and an optimal control problem for the so-called viscoplastic model is obtained. Existence of a global optimizer is proved for both the regularized and original problems, and strong convergence of the solutions is established
  • Item
    Finite element error analysis for state-constrained optimal control of the Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Reyes, Juan Carlos de los; Meyer, Christian; Vexler, Boris
    An optimal control problem for 2d and 3d Stokes equations is investigated with pointwise inequality constraints on the state and the control. The paper is concerened with the full discretization of the control problem allowing for different types of discretization of both the control and the state. For instance, piecewise linear and continuous approximations of the control are included in the present theory. Under certain assumptions on the $L^infty$-error of the finite element discretization of the state, error estimates for the control are derived which can be seen to be optimal since their order of convergence coincides with the one of the interpolation error. The assumptions of the $L^infty$-finite-element-error can be verified for different numerical settings. The theoretical results are confirmed by numerical examples.
  • Item
    Hölder continuity for second order elliptic problems with nonsmooth data
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Haller-Dintelmann, Robert; Meyer, Christian; Rehberg, Joachim
    The well known De Giorgi result on Hölder continuity for solutions of the Dirichlet problem is re-established for mixed boundary value problems, provided that the underlying domain is a Lipschitz domain and the border between the Dirichlet and the Neumann boundary part satisfies a very general geometric condition. Implications of this result for optimal control theory are presented.