Search Results

Now showing 1 - 4 of 4
  • Item
    Passing to the limit in a Wasserstein gradient flow : from diffusion to reaction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Arnrich, Steffen; Mielke, Alexander; Peletier, Mark A.; Savar´e, Giuseppe; Veneroni, Marco
    We study a singular-limit problem arising in the modelling of chemical reactions. At finite e>0, the system is described by a Fokker-Planck convection-diffusion equation with a double-well convection potential. This potential is scaled by 1/e, and in the limit eto0, the solution concentrates onto the two wells, resulting into a limiting system that is a pair of ordinary differential equations for the density at the two wells. This convergence has been proved in Peletier, Savaré, and Veneroni, em SIAM Journal on Mathematical Analysis, 42(4):1805--1825, 2010, using the linear structure of the equation. In this paper we re-prove the result by using solely the Wasserstein gradient-flow structure of the system. In particular, we make no use of the linearity, nor of the fact that it is a second-order system. The first key step in this approach is a reformulation of the equation as the minimization of an action functional that captures the propety of being a emphcurve of maximal slope in an integrated form. The second important step is a rescaling of space. Using only the Wasserstein gradient-flow structure, we prove that the sequence of rescaled solutions is pre-compact in an appropriate topology. ...
  • Item
    On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Mielke, Alexander; Peletier, Mark A.; Renger, D.R. Michiel
    Motivated by the occurence in rate functions of time-dependent large-deviation principles, we study a class of non-negative functions L that induce a flow, given by L(pt, pt) = 0. We derive necessary and sufficient conditions for the unique existence of a generalized gradient structure for the induced flow, as well as explicit formulas for the corresponding driving entropy and dissipation functional. In particular, we show how these conditions can be given a probabilistic interpretation when L is associated to the large deviations of a microscopic particle system. Finally, we illustrate the theory for independent Brownian particles with drift, which leads to the entropy-Wasserstein gradient structure, and for independent Markovian particles on a finite state space, which leads to a previously unknown gradient structure.
  • Item
    Non-equilibrium thermodynamical principles for chemical reactions with mass-action kinetics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Mielke, Alexander; Patterson, Robert I.A.; Peletier, Mark A.; Renger, D.R. Michiel
    We study stochastic interacting particle systems that model chemical reaction networks on the microscopic scale, converging to the macroscopic Reaction Rate Equation. One abstraction level higher, we also study the ensemble of such particle systems, converging to the corresponding Liouville transport equation. For both systems, we calculate the corresponding large deviations and show that under the condition of detailed balance, the large deviations enables us to derive a non-linear relation between thermodynamic fluxes and free energy driving force.
  • Item
    On microscopic origins of generalized gradient structures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Liero, Matthias; Mielke, Alexander; Peletier, Mark A.; Renger, D.R. Michiel
    Classical gradient systems have a linear relation between rates and driving forces. In generalized gradient systems we allow for arbitrary relations derived from general non-quadratic dissipation potentials. This paper describes two natural origins for these structures. A first microscopic origin of generalized gradient structures is given by the theory of large-deviation principles. While Markovian diffusion processes lead to classical gradient structures, poissonian jump processes give rise to cosh-type dissipation potentials. A second origin arises via a new form of convergence, that we call EDP-convergence. Even when starting with classical gradient systems, where the dissipation potential is a quadratic functional of the rate, we may obtain a generalized gradient system in the evolutionary Gamma-limit. As examples we treat (i) the limit of a diffusion equation having a thin layer of low diffusivity, which leads to a membrane model, and (ii) the limit of diffusion over a high barrier, which gives a reaction-diffusion system.