Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion

2013, Mielke, Alexander, Reichelt, Sina, Thomas, Marita

We derive a two-scale homogenization limit for reaction-diffusion systems where for some species the diffusion length is of order 1 whereas for the other species the diffusion length is of the order of the periodic microstructure. Thus, in the limit the latter species will display diffusion only on the microscale but not on the macroscale. Because of this missing compactness, the nonlinear coupling through the reaction terms cannot be homogenized but needs to be treated on the two-scale level. In particular, we have to develop new error estimates to derive strong convergence results for passing to the limit.

Loading...
Thumbnail Image
Item

Damage of nonlinearly elastic materials at small strain : existence and regularity results

2009, Thomas, Marita, Mielke, Alexander

Literaturverz. S. 31 In this paper an existence result for energetic solutions of rate-independent damage processes is established and the temporal regularity of the solution is discussed. We consider a body consisting of a physically nonlinearly elastic material undergoing small deformations and partial damage. The present work is a generalization of [Mielke-Roubicek 2006] concerning the properties of the stored elastic energy density as well as the suitable Sobolev space for the damage variable: While previous work assumes that the damage variable z satisfies z ? W^1,r (Omega) with r>d for Omega ? R^d, we can handle the case r>1 by a new technique for the construction of joint recovery sequences. Moreover, this work generalizes the temporal regularity results to physically nonlinearly elastic materials by analyzing Lipschitz- and Hölder-continuity of solutions with respect to time.

Loading...
Thumbnail Image
Item

From damage to delamination in nonlinearly elastic materials at small strains

2010, Mielke, Alexander, Roubíček, Thomáš, Thomas, Marita

Brittle Griffith-type delamination of compounds is deduced by means of Gamma-convergence from partial, isotropic damage of three-specimen-sandwich-structures by flattening the middle component to the thickness 0. The models used here allow for nonlinearly elastic materials at small strains and consider the processes to be unidirectional and rate-independent. The limit passage is performed via a double limit: first, we gain a delamination model involving the gradient of the delamination variable, which is essential to overcome the lack of a uniform coercivity arising from the passage from partial damage to delamination. Second, the delamination-gradient is supressed. Noninterpenetration- and transmission-conditions along the interface are obtained

Loading...
Thumbnail Image
Item

Gradient structure for optoelectronic models of semiconductors

2016, Mielke, Alexander, Peschka, Dirk, Rotundo, Nella, Thomas, Marita

We derive an optoelectronic model based on a gradient formulation for the relaxation of electron-, hole- and photon- densities to their equilibrium state. This leads to a coupled system of partial and ordinary differential equations, for which we discuss the isothermal and the non-isothermal scenario separately.