Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

Differential, energetic, and metric formulations for rate-independent processes

2009, Mielke, Alexander

We consider different solution concepts for rate-independent systems. This includes energetic solutions in the topological setting and differentiable, local, parametrized and BV solutions in the Banach-space setting. The latter two solution concepts rely on the method of vanishing viscosity, in which solutions of the rate-independent system are defined as limits of solutions of systems with small viscosity. Finally, we also show how the theory of metric evolutionary systems can be used to define parametrized and BV solutions in metric spaces.

Loading...
Thumbnail Image
Item

Weighted energy-dissipation functionals for gradient flows

2009, Mielke, Alexander, Stefanelli, Ulisse

We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke & Ortiz in ``A class of minimum principles for characterizing the trajectories of dissipative systems''. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from S. Conti and M. Ortiz ``Minimum principles for the trajectories of systems governed by rate problems'

Loading...
Thumbnail Image
Item

Damage of nonlinearly elastic materials at small strain : existence and regularity results

2009, Thomas, Marita, Mielke, Alexander

Literaturverz. S. 31 In this paper an existence result for energetic solutions of rate-independent damage processes is established and the temporal regularity of the solution is discussed. We consider a body consisting of a physically nonlinearly elastic material undergoing small deformations and partial damage. The present work is a generalization of [Mielke-Roubicek 2006] concerning the properties of the stored elastic energy density as well as the suitable Sobolev space for the damage variable: While previous work assumes that the damage variable z satisfies z ? W^1,r (Omega) with r>d for Omega ? R^d, we can handle the case r>1 by a new technique for the construction of joint recovery sequences. Moreover, this work generalizes the temporal regularity results to physically nonlinearly elastic materials by analyzing Lipschitz- and Hölder-continuity of solutions with respect to time.

Loading...
Thumbnail Image
Item

BV solutions and viscosity approximations of rate-independent systems

2009, Mielke, Alexander, Rossi, Riccarda, Savaré, Giuseppe

In the nonconvex case solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential which is a viscous regularization of a given rate-independent dissipation potential. The resulting definition of `BV solutions' involves, in a nontrivial way, both the rate-independent and the viscous dissipation potential, which play a crucial role in the description of the associated jump trajectories. We shall prove a general convergence result for the time-continuous and for the time-discretized viscous approximations and establish various properties of the limiting $BV$ solutions. In particular, we shall provide a careful description of the jumps and compare the new notion of solutions with the related concepts of energetic and local solutions to rate-independent systems.

Loading...
Thumbnail Image
Item

High-frequency averaging in semi-classical Hartree-type equations

2009, Giannoulis, Johannes, Mielke, Alexander, Sparber, Christof

We investigate the asymptotic behavior of solutions to semi-classical Schröodinger equations with nonlinearities of Hartree type. For a weakly nonlinear scaling, we show the validity of an asymptotic superposition principle for slowly modulated highly oscillatory pulses. The result is based on a high-frequency averaging effect due to the nonlocal nature of the Hartree potential, which inhibits the creation of new resonant waves. In the proof we make use of the framework of Wiener algebras.

Loading...
Thumbnail Image
Item

Complete damage evolution based on energies and stresses

2009, Mielke, Alexander

The rate-independent damage model recently developed in Bouchitté, Mielke, Roubícek ``A complete-damage problem at small strains" allows for complete damage, such that the deformation is no longer well-defined. The evolution can be described in terms of energy densities and stresses. Using concepts of parametrized Gamma convergence, we generalize the theory to convex, but non-quadratic elastic energies by providing Gamma convergence of energetic solutions from partial to complete damage under rather general conditions

Loading...
Thumbnail Image
Item

Dispersive stability of infinite dimensional Hamiltonian systems on lattices

2009, Mielke, Alexander, Patz, Carsten

We derive dispersive stability results for oscillator chains like the FPU chain or the discrete Klein-Gordon chain. If the nonlinearity is of degree higher than 4, then small localized initial data decay like in the linear case. For this, we provide sharp decay estimates for the linearized problem using oscillatory integrals and avoiding the nonoptimal interpolation between different $ell^p$ spaces

Loading...
Thumbnail Image
Item

Padé approximant for refractive index and nonlocal envelope equations

2009, Amiranashvili, Shalva, Mielke, Alexander, Bandelow, Uwe

Padé approximant is superior to Taylor expansion when functions contain poles. This is especially important for response functions in complex frequency domain, where singularities are present and intimately related to resonances and absorption. Therefore we introduce a diagonal Padé approximant for the complex refractive index and apply it to the description of short optical pulses. This yields a new nonlocal envelope equation for pulse propagation. The model offers a global representation of arbitrary medium dispersion and absorption, e.g., the fulfillment of the Kramers-Kronig relation can be established. In practice, the model yields an adequate description of spectrally broad pulses for which the polynomial dispersion operator diverges and can induce huge errors.

Loading...
Thumbnail Image
Item

Error estimates for space-time discretizations of a rate-independent variational inequality

2009, Mielke, Alexander, Paoli, Laetitia, Petrov, Adrien, Stefanelli, Ulisse

This paper deals with error estimates for space-time discretizations in the context of evolutionary variational inequalities of rate-independent type. After introducing a general abstract evolution problem, we address a fully-discrete approximation and provide a priori error estimates. The application of the abstract theory to a semilinear case is detailed. In particular, we provide explicit space-time convergence rates for the isothermal Souza-Auricchio model for shape-memory alloys.