Search Results

Now showing 1 - 10 of 25
  • Item
    Differential, energetic, and metric formulations for rate-independent processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Mielke, Alexander
    We consider different solution concepts for rate-independent systems. This includes energetic solutions in the topological setting and differentiable, local, parametrized and BV solutions in the Banach-space setting. The latter two solution concepts rely on the method of vanishing viscosity, in which solutions of the rate-independent system are defined as limits of solutions of systems with small viscosity. Finally, we also show how the theory of metric evolutionary systems can be used to define parametrized and BV solutions in metric spaces.
  • Item
    Global existence for rate-independent gradient plasticity at finite strain
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Mainik, Andreas; Mielke, Alexander
    We provide a global existence result for the time-continuous elastoplasticity problem using the energetic formulation. For this we show that the geometric nonlinearities via the multiplicative decomposition of the strain can be controlled via polyconvexity and a priori stress bounds in terms of the energy density. While temporal oscillations are controlled via the energy dissipation the spatial compactness is obtain via the regularizing terms involving gradients of the internal variables.
  • Item
    BV solutions and viscosity approximations of rate-independent systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe
    In the nonconvex case solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential which is a viscous regularization of a given rate-independent dissipation potential. The resulting definition of `BV solutions' involves, in a nontrivial way, both the rate-independent and the viscous dissipation potential, which play a crucial role in the description of the associated jump trajectories. We shall prove a general convergence result for the time-continuous and for the time-discretized viscous approximations and establish various properties of the limiting $BV$ solutions. In particular, we shall provide a careful description of the jumps and compare the new notion of solutions with the related concepts of energetic and local solutions to rate-independent systems.
  • Item
    Dispersive stability of infinite dimensional Hamiltonian systems on lattices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Mielke, Alexander; Patz, Carsten
    We derive dispersive stability results for oscillator chains like the FPU chain or the discrete Klein-Gordon chain. If the nonlinearity is of degree higher than 4, then small localized initial data decay like in the linear case. For this, we provide sharp decay estimates for the linearized problem using oscillatory integrals and avoiding the nonoptimal interpolation between different $ell^p$ spaces
  • Item
    A metric approach to a class fo doubly nonlinear evolution euations and applications
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Rossi, Riccarda; Mielke, Alexander; Savaré, Giuseppe
    This paper deals with the analysis of a class of doubly nonlinear evolution equations in the framework of a general metric space. We propose for such equations a suitable metric formulation (which in fact extends the notion of Curve of Maximal Slope for gradient flows in metric spaces, see [5]), and prove the existence of solutions for the related Cauchy problem by means of an approximation scheme by time discretization. Then, we apply our results to obtain the existence of solutions to abstract doubly nonlinear equations in reflexive Banach spaces. The metric approach is also exploited to analyze a class of evolution equations in $L^1$ spaces.
  • Item
    Weak-convergence methods for Hamiltonian multiscale problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Mielke, Alexander
    We consider Hamiltonian problems depending on a small parameter like in wave equations with rapidly oscillating coefficients or the embedding of an infinite atomic chain into a continuum by letting the atomic distance tend to $0$. For general semilinear Hamiltonian systems we provide abstract convergence results in terms of the existence of a family of joint recovery operators which guarantee that the effective equation is obtained by taking the $Gamma$-limit of the Hamiltonian. The convergence is in the weak sense with respect to the energy norm. Exploiting the well-developed theory of $Gamma$-convergence, we are able to generalize the admissible coefficients for homogenization in the wave equations. Moreover, we treat the passage from a discrete oscillator chain to a wave equation with general $rmL^infty$ coefficients
  • Item
    Reverse approximation of energetic solutions to rate-independent processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Mielke, Alexander; Rindler, Filip
    Energetic solutions to rate-independent processes are usually constructed via time-incremental minimization problems. In this work we show that all energetic solutions can be approximated by incremental problems if we allow approximate minimizers, where the error in minimization has to be of the order of the time step. Moreover, we study sequences of problems where the energy functionals have a Gamma limit.
  • Item
    Thermally driven phase transformation in shape-memory alloys
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Mielke, Alexander; Petrov, Adrien
    This paper analyzes a model for phase transformation in shape-memory alloys induced by temperature changes and by mechanical loading. We assume that the temperature is prescribed and formulate the problem within the framework of the energetic theory of rate-independent processes. Existence and uniqueness results are proved.
  • Item
    Crack growth in polyconvex materials
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Knees, Dorothee; Zanini, Chiara; Mielke, Alexander
    We discuss a model for crack propagation in an elastic body, where the crack path is described a-priori. In particular, we develop in the framework of finite-strain elasticity a rate-independent model for crack evolution which is based on the Griffith fracture criterion. Due to the nonuniqueness of minimizing deformations, the energy-release rate is no longer continuous with respect to time and the position of the crack tip. Thus, the model is formulated in terms of the Clarke differential of the energy, generalizing the classical crack evolution models for elasticity with strictly convex energies. We prove the existence of solutions for our model and also the existence of special solutions, where only certain extremal points of the Clarke differential are allowed.
  • Item
    Convergence of solutions of kinetic variational inequalities in the rate-independent quasi-static limit
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Mielke, Alexander; Petrov, Adrien; Martins, João A.C.
    This paper discusses the convergence of kinetic variational inequalities to rate-independent quasi-static variational inequalities. Mathematical formulations as well as existence and uniqueness results for kinetic and rate-independent quasi-static problems are provided. Sharp a priori estimates for the kinetic problem are derived that imply that the kinetic solutions converge to the rate-independent ones, when the size of initial perturbations and the rate of application of the forces tends to 0. An application to three-dimensional elastic-plastic systems with hardening is given.