Search Results

Now showing 1 - 10 of 22
Loading...
Thumbnail Image
Item

Optimal Entropy-Transport problems and a new Hellinger–Kantorovich distance between positive measures

2017, Liero, Matthias, Mielke, Alexander, Savaré, Giuseppe

We develop a full theory for the new class of Optimal Entropy-Transport problems between nonnegative and finite Radon measures in general topological spaces. These problems arise quite naturally by relaxing the marginal constraints typical of Optimal Transport problems: given a pair of finite measures (with possibly different total mass), one looks for minimizers of the sum of a linear transport functional and two convex entropy functionals, which quantify in some way the deviation of the marginals of the transport plan from the assigned measures. As a powerful application of this theory, we study the particular case of Logarithmic Entropy-Transport problems and introduce the new Hellinger–Kantorovich distance between measures in metric spaces. The striking connection between these two seemingly far topics allows for a deep analysis of the geometric properties of the new geodesic distance, which lies somehow between the well-known Hellinger–Kakutani and Kantorovich–Wasserstein distances.

Loading...
Thumbnail Image
Item

Gradient structure for optoelectronic models of semiconductors

2016, Mielke, Alexander, Peschka, Dirk, Rotundo, Nella, Thomas, Marita

We derive an optoelectronic model based on a gradient formulation for the relaxation of electron-, hole- and photon- densities to their equilibrium state. This leads to a coupled system of partial and ordinary differential equations, for which we discuss the isothermal and the non-isothermal scenario separately.

Loading...
Thumbnail Image
Item

Thermoviscoelasticity in Kelvin--Voigt rheology at large strains

2019, Mielke, Alexander, Roubíček, Tomáš

The frame-indifferent thermodynamically-consistent model of thermoviscoelasticity at large strain is formulated in the reference configuration with using the concept of the second-grade nonsimple materials. We focus on physically correct viscous stresses that are frame indifferent under time-dependent rotations. Also elastic stresses are frame indifferent under rotations and respect positivity of the determinant of the deformation gradient. The heat transfer is governed by the Fourier law in the actual deformed configuration, which leads to a nontrivial description when pulled back into the reference configuration. Existence of weak solutions in the quasistatic setting, i.e. inertial forces are ignored, is shown by time discretization.

Loading...
Thumbnail Image
Item

An existence result and evolutionary [Gamma]-convergence for perturbed gradient systems

2018, Bacho, Aras, Emmrich, Etienne, Mielke, Alexander

We consider the initial-value problem for the perturbed gradient flows, where a differential inclusion is formulated in terms of a subdifferential of an energy functional, a subdifferential of a dissipation potential and a more general perturbation, which is assumed to be continuous and to satisfy a suitable growth condition. Under additional assumptions on the dissipation potential and the energy functional, existence of strong solutions is shown by proving convergence of a semi-implicit discretization scheme with a variational approximation technique.

Loading...
Thumbnail Image
Item

Decay to equilibrium for energy-reaction-diffusion systems

2016, Haskovec, Jan, Hittmeir, Sabine, Markowich, Peter, Mielke, Alexander

We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, at first in entropy and further in L1 using Cziszàr-Kullback-Pinsker type inequalities.

Loading...
Thumbnail Image
Item

Exploring families of energy-dissipation landscapes via tilting -- Three types of EDP convergence

2019, Mielke, Alexander, Montefusco, Alberto, Peletier, Mark A.

This paper revolves around a subtle distinction between two concepts: passing to the limit in a family of gradient systems, on one hand, and deriving effective kinetic relations on the other. The two concepts are strongly related, and in many examples they even appear to be the same. Our main contributions are to show that they are different, to show that well-known techniques developed for the former may give incorrect results for the latter, and to introduce new tools to remedy this. The approach is based on the Energy-Dissipation Principle that provides a variational formulation to gradient-flow equations that allows one to apply techniques from Γ-convergence of functional on states and functionals on trajectories.

Loading...
Thumbnail Image
Item

Convergence to equilibrium in energy-reaction-diffusion systems using vector-valued functional inequalities : dedicated to Peter Markowich on the occasion of his sixtieth birthday

2016, Mielke, Alexander, Mittnenzweig, Markus

We discuss how the recently developed energy-dissipation methods for reaction-diffusion systems can be generalized to the non-isothermal case. For this we use concave entropies in terms of the densities of the species and the internal energy, with the important feature, that the equilibrium densities may depend on the internal energy. Using the log-Sobolev estimate and variants for lower-order entropies as well as estimates for the entropy production of the nonlinear reactions we give two methods to estimate the relative entropy by the total entropy production, namely a somewhat restrictive convexity method, which provides explicit decay rates, and a very general, but weaker compactness method.

Loading...
Thumbnail Image
Item

Geometric properties of cones with applications on the Hellinger-Kantorovich space, and a new distance on the space of probability measures

2017, Laschos, Vaios, Mielke, Alexander

By studying general geometric properties of cone spaces, we prove the existence of a distance on the space of Probability measures that turns the Hellinger--Kantorovich space into a cone space over the space of probabilities measures. Here we exploit a natural two-parameter scaling property of the Hellinger-Kantorovich distance. For the new space, we obtain a full characterization of the geodesics. We also provide new geometric properties for the original space, including a two-parameter rescaling and reparametrization of the geodesics, local-angle condition and some partial K-semiconcavity of the squared distance, that it will be used in a future paper to prove existence of gradient flows.

Loading...
Thumbnail Image
Item

Linearized elasticity as Mosco-limit of finite elasticity in the presence of cracks

2016, Gussmann, Pascal, Mielke, Alexander

The small-deformation limit of finite elasticity is considered in presence of a given crack. The rescaled finite energies with the constraint of global injectivity are shown to Gamma-converge to the linearized elastic energy with a local constraint of non-interpenetration along the crack.

Loading...
Thumbnail Image
Item

Optimal Entropy-Transport problems and a new Hellinger-Kantorovich distance between positive measures

2016, Liero, Matthias, Mielke, Alexander, Savaré, Giuseppe

We develop a full theory for the new class of Optimal Entropy-Transport problems between nonnegative and finite Radon measures in general topological spaces. They arise quite naturally by relaxing the marginal constraints typical of Optimal Transport problems: given a couple of finite measures (with possibly different total mass), one looks for minimizers of the sum of a linear transport functional and two convex entropy functionals, that quantify in some way the deviation of the marginals of the transport plan from the assigned measures. As a powerful application of this theory, we study the particular case of Logarithmic Entropy-Transport problems and introduce the new Hellinger-Kantorovich distance between measures in metric spaces. The striking connection between these two seemingly far topics allows for a deep analysis of the geometric properties of the new geodesic distance, which lies somehow between the well-known Hellinger-Kakutani and Kantorovich-Wasserstein distances.