Search Results

Now showing 1 - 6 of 6
  • Item
    Deriving amplitude equations via evolutionary [Gamma]-convergence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Mielke, Alexander
    We discuss the justification of the GinzburgLandau equation with real coefficients as an amplitude equation for the weakly unstable one-dimensional SwiftHohenberg equation. In contrast to classical justification approaches we employ the method of evolutionary [Gamma]-convergence by reformulating both equation as gradient systems. Using a suitable linear transformation we show [Gamma]-convergence of the associated energies in suitable function spaces. The limit passage of the time-dependent problem relies on the recent theory of evolutionary variational inequalities for families of uniformly convex functionals as developed by Daneri and Savare 2010. In the case of a cubic energy it suffices that the initial conditions converge strongly in L2, while for the case of a quadratic nonlinearity we need to impose weak convergence in H1. However, we do not need wellpreparedness of the initial conditions.
  • Item
    Passing to the limit in a Wasserstein gradient flow : from diffusion to reaction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Arnrich, Steffen; Mielke, Alexander; Peletier, Mark A.; Savar´e, Giuseppe; Veneroni, Marco
    We study a singular-limit problem arising in the modelling of chemical reactions. At finite e>0, the system is described by a Fokker-Planck convection-diffusion equation with a double-well convection potential. This potential is scaled by 1/e, and in the limit eto0, the solution concentrates onto the two wells, resulting into a limiting system that is a pair of ordinary differential equations for the density at the two wells. This convergence has been proved in Peletier, Savaré, and Veneroni, em SIAM Journal on Mathematical Analysis, 42(4):1805--1825, 2010, using the linear structure of the equation. In this paper we re-prove the result by using solely the Wasserstein gradient-flow structure of the system. In particular, we make no use of the linearity, nor of the fact that it is a second-order system. The first key step in this approach is a reformulation of the equation as the minimization of an action functional that captures the propety of being a emphcurve of maximal slope in an integrated form. The second important step is a rescaling of space. Using only the Wasserstein gradient-flow structure, we prove that the sequence of rescaled solutions is pre-compact in an appropriate topology. ...
  • Item
    [Gamma]-limits and relaxations for rate-independent evolutionary problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Mielke, Alexander; Toubíček, Tomáš; Stefanelli, Ulisse
    This work uses the energetic formulation of rate-independent systems that is based on the stored-energy functionals ε and the dissipation distance D. For sequences (ε k)k ∈ ℕ and (D k)k ∈ ℕ we address the question under which conditions the limits q∞ of solutions qk: [0,T] → Q satisfy a suitable limit problem with limit functionals ε∞ and D∞, which are the corresponding Γ-limits. We derive a sufficient condition, called emphconditional upper semi-continuity of the stable sets, which is essential to guarantee that q∞ solves the limit problem. In particular, this condition holds if certain emphjoint recovery sequences exist. Moreover, we show that time-incremental minimization problems can be used to approximate the solutions. A first example involves the numerical approximation of functionals using finite-element spaces. A second example shows that the stop and the play operator convergece if the yield sets converge in the sense of Mosco. The third example deals with a problem developing microstructure in the limit k → ∞, which in the limit can be described by an effective macroscopic model.
  • Item
    On evolutionary [Gamma]-convergence for gradient systems : in memory of Eduard, Waldemar, and Elli Mielke
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Mielke, Alexander
    In these notes we discuss general approaches for rigorously deriving limits of generalized gradient flows. Our point of view is that a generalized gradient system is defined in terms of two functionals, namely the energy functional E and the dissipation potential R or the associated dissipation distance. We assume that the functionals depend on a small parameter and that the associated gradient systems have solutions u. We investigate the question under which conditions the limits u of (subsequences of) the solutions u are solutions of the gradient system generated by the [Gamma]-limits E0 and R0. Here the choice of the right topology will be crucial awell as additional structural conditions. We cover classical gradient systems, where R is quadratic, and rate-independent systems as well as the passage from classical gradient to rate-independent systems. Various examples, such as periodic homogenization, are used to illustrate the abstract concepts and results.
  • Item
    A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Mielke, Alexander; Ortiz, Michael
    This work is concerned with the reformulation of evolutionary problems in a weak form enabling consideration of solutions that may exhibit evolving microstructures. This reformulation is accomplished by expressing the evolutionary problem in variational form, i.e., by identifying a functional whose minimizers represent entire trajectories of the system. The particular class of functionals under consideration is derived by first defining a sequence of time-discretized minimum problems and subsequently formally passing to the limit of continuous time. The resulting functionals may be regarded as elliptic regularizations of the original evolutionary problem. We find that the $Gamma$-limits of interest are highly degenerate and provide limited information regarding the limiting trajectories of the system. Instead we seek to characterize the minimizing trajectories directly. The special class of problems characterized by a rate-independent dissipation functional is amenable to a particularly illuminating analysis. For these systems it is possible to derive a priori bounds that are independent of the regularizing parameter, whence it is possible to extract convergent subsequences and find the limiting trajectories. Under general assumptions on the functionals, we show that all such limits satisfy the energetic formulation (S) & (E) for rate-independent systems. Moreover, we show that the accumulation points of the regularized solutions solve the associated limiting energetic formulation.
  • Item
    Linearized elasticity as Mosco-limit of finite elasticity in the presence of cracks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Gussmann, Pascal; Mielke, Alexander
    The small-deformation limit of finite elasticity is considered in presence of a given crack. The rescaled finite energies with the constraint of global injectivity are shown to Gamma-converge to the linearized elastic energy with a local constraint of non-interpenetration along the crack.