Search Results

Now showing 1 - 2 of 2
  • Item
    Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin : A Perspective for Glioblastoma Treatment
    (Basel : MDPI, 2019) Makharza, Sami A.; Cirillo, Giuseppe; Vittorio, Orazio; Valli, Emanuele; Voli, Florida; Farfalla, Annafranca; Curcio, Manuela; Iemma, Francesca; Nicoletta, Fiore Pasquale; El-Gendy, Ahmed A.; Goya, Gerardo F.; Hampel, Silke
    Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the fabrication of a hybrid nanocarrier composed of magnetic γ-Fe2 O3 nanoparticles and nanographene oxide (NGO). The magnetic component, obtained by annealing magnetite Fe3 O4 and characterized by XRD measurements, was combined with NGO sheets prepared via a modified Hummer’s method. The morphological and thermogravimetric analysis proved the effective binding of γ-Fe2 O3 nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at room temperature revealed superparamagnetic-like behavior with a maximum value of MS = 15 emu/g and coercivity HC ≈ 0 Oe within experimental error. The nanohybrid was found to possess high affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity upon loading into the carrier was observed, together with the possibility to spatially control the drug delivery at a target site. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Release of Bioactive Molecules from Graphene Oxide-Alginate Hybrid Hydrogels: Effect of Crosslinking Method
    (Basel : MDPI, 2023) Madeo, Lorenzo Francesco; Curcio, Manuela; Iemma, Francesca; Nicoletta, Fiore Pasquale; Hampel, Silke; Cirillo, Giuseppe
    To investigate the influence of crosslinking methods on the releasing performance of hybrid hydrogels, we synthesized two systems consisting of Graphene oxide (GO) as a functional element and alginate as polymer counterpart by means of ionic gelation (physical method, 𝐻𝑃𝐴−𝐺𝑂) and radical polymerization (chemical method, 𝐻𝐶𝐴−𝐺𝑂). Formulations were optimized to maximize the GO content (2.0 and 1.15% for 𝐻𝑃𝐴−𝐺𝑂 and 𝐻𝐶𝐴−𝐺𝑂, respectively) and Curcumin (CUR) was loaded as a model drug at 2.5, 5.0, and 7.5% (by weight). The physico-chemical characterization confirmed the homogeneous incorporation of GO within the polymer network and the enhanced thermal stability of hybrid vs. blank hydrogels. The determination of swelling profiles showed a higher swelling degree for 𝐻𝐶𝐴−𝐺𝑂 and a marked pH responsivity due to the COOH functionalities. Moreover, the application of external voltages modified the water affinity of 𝐻𝐶𝐴−𝐺𝑂, while they accelerated the degradation of 𝐻𝑃𝐴−𝐺𝑂 due to the disruption of the crosslinking points and the partial dissolution of alginate. The evaluation of release profiles, extensively analysed by the application of semi-empirical mathematical models, showed a sustained release from hybrid hydrogels, and the possibility to modulate the releasing amount and rate by electro-stimulation of 𝐻𝐶𝐴−𝐺𝑂.