Search Results

Now showing 1 - 3 of 3
  • Item
    4D Printing of a Light-Driven Soft Actuator with Programmed Printing Density
    (Washington, DC : ACS Publications, 2020) Nishiguchi, Akihiro; Zhang, Hang; Schweizerhof, Sjören; Schulte, Marie Friederike; Mourran, Ahmed; Möller, Martin
    There is a growing interest in the concept of four-dimensional (4D) printing that combines a three-dimensional (3D) manufacturing process with dynamic modulation for bioinspired soft materials exhibiting more complex functionality. However, conventional approaches have drawbacks of low resolution, control of internal micro/nanostructure, and creation of fast, complex actuation due to a lack of high-resolution fabrication technology and suitable photoresist for soft materials. Here, we report an approach of 4D printing that develops a bioinspired soft actuator with a defined 3D geometry and programmed printing density. Multiphoton lithography (MPL) allows for controlling printing density in gels at pixel-by-pixel with a resolution of a few hundreds of nanometers, which tune swelling behaviors of gels in response to external stimuli. We printed a 3D soft actuator composed of thermoresponsive poly(N-isopropylacrylamide) (PNIPAm) and gold nanorods (AuNRs). To improve the resolution of printing, we synthesized a functional, thermoresponsive macrocrosslinker. Through plasmonic heating by AuNRs, nanocomposite-based soft actuators undergo nonequilibrium, programmed, and fast actuation. Light-mediated manufacture and manipulation (MPL and photothermal effect) offer the feasibility of 4D printing toward adaptive bioinspired soft materials. Copyright © 2020 American Chemical Society.
  • Item
    Anisometric Microstructures to Determine Minimal Critical Physical Cues Required for Neurite Alignment
    (Weinheim : Wiley-VCH, 2021) Vedaraman, Sitara; Perez-Tirado, Amaury; Haraszti, Tamas; Gerardo-Nava, Jose; Nishiguchi, Akihiro; De Laporte, Laura
    In nerve regeneration, scaffolds play an important role in providing an artificial extracellular matrix with architectural, mechanical, and biochemical cues to bridge the site of injury. Directed nerve growth is a crucial aspect of nerve repair, often introduced by engineered scaffolds imparting linear tracks. The influence of physical cues, determined by well-defined architectures, has been mainly studied for implantable scaffolds and is usually limited to continuous guiding features. In this report, the potential of short anisometric microelements in inducing aligned neurite extension, their dimensions, and the role of vertical and horizontal distances between them, is investigated. This provides crucial information to create efficient injectable 3D materials with discontinuous, in situ magnetically oriented microstructures, like the Anisogel. By designing and fabricating periodic, anisometric, discreet guidance cues in a high-throughput 2D in vitro platform using two-photon lithography techniques, the authors are able to decipher the minimal guidance cues required for directed nerve growth along the major axis of the microelements. These features determine whether axons grow unidirectionally or cross paths via the open spaces between the elements, which is vital for the design of injectable Anisogels for enhanced nerve repair. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    3D-Printing of Structure-Controlled Antigen Nanoparticles for Vaccine Delivery
    (Columbus, Ohio : American Chemical Soc., 2020) Nishiguchi, Akihiro; Shima, Fumiaki; Singh, Smriti; Akashi, Mitsuru; Moeller, Martin
    Targeted delivery of antigens to immune cells using micro/nanocarriers may serve as a therapeutic application for vaccination. However, synthetic carriers have potential drawbacks including cytotoxicity, low encapsulation efficiency of antigen, and lack of a morphological design, which limit the translation of the delivery system to clinical use. Here, we report a carrier-free and three-dimensional (3D)-shape-designed antigen nanoparticle by multiphoton lithography-based 3D-printing. This simple, versatile 3D-printing approach provides freedom for the precise design of particle shapes with a nanoscale resolution. Importantly, shape-designed antigen nanoparticles with distinct aspect ratios show shape-dependent immune responses. The 3D-printing approach for the rational design of nanomaterials with increasing safety, complexity, and efficacy offers an emerging platform to develop vaccine delivery systems and mechanistic understanding.