Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Tuneable Dielectric Properties Derived from Nitrogen-Doped Carbon Nanotubes in PVDF-Based Nanocomposites

2018, Pawar, Shital Patangrao, Arjmand, Mohammad, Pötschke, Petra, Krause, Beate, Fischer, Dieter, Bose, Suryasarathi, Sundararaj, Uttandaraman

Nitrogen-doped multiwall carbon nanotubes (N-MWNTs) with different structures were synthesized by employing chemical vapor deposition and changing the argon/ethane/nitrogen gas precursor ratio and synthesis time, and broadband dielectric properties of their poly(vinylidene fluoride) (PVDF)-based nanocomposites were investigated. The structure, morphology, and electrical conductivity of synthesized N-MWNTs were assessed via Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy, and powder conductivity techniques. The melt compounded PVDF nanocomposites manifested significantly high real part of the permittivity (ϵ′) along with low dissipation factor (tan δϵ) in 0.1 kHz to 1 MHz frequency range, suggesting use as efficient charge-storage materials. Longer synthesis time resulted in enhanced carbon purity as well as higher thermal stability, determined via TGA analysis. The inherent electrical conductivity of N-MWNTs scaled with the carbon purity. The charge-storage ability of the developed PVDF nanocomposites was commensurate with the amount of the nitrogen heteroatom (i.e., self-polarization), carbon purity, and inherent electrical conductivity of N-MWNTs and increased with better dispersion of N-MWNTs in PVDF.

Loading...
Thumbnail Image
Item

Influence of talc with different particle sizes in melt-mixed LLDPE/MWCNT composites

2013, Müller, Michael Thomas, Dreyße, Janine, Häußler, Liane, Krause, Beate, Pötschke, Petra

Linear low-density polyethylene (LLDPE) was melt-mixed with multiwalled carbon nanotubes (MWCNTs) and varying amounts of three different kinds of talc (phyllo silicate), each with a different particle size distribution, to examine the effect of these filler combinations with regards to the electrical percolation behavior. The state of the filler dispersion was assessed using transmission light microscopy and electron microscopy. The use of talc as a second filler during the melt mixing of LLDPE/MWCNT composites resulted in an improvement in the dispersion of the MWCNTs and a decrease of the electrical percolation threshold. Talc with lower particle sizes showed a more pronounced effect than talc with larger particle sizes. However, the improvement in dispersion was not reflected in the mechanical properties. Modulus and stress values increase with both, MWCNT and talc addition, but not in a synergistic manner. The crystallization behavior of the composites was studied by differential scanning calorimetry to determine its potential influence on the electrical percolation threshold. It was found that the crystallinity of the matrix increased slightly with the addition of talc but no further increments were observed with the incorporation of the MWCNTs. © 2013 Wiley Periodicals, Inc.

Loading...
Thumbnail Image
Item

Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures

2013, Pötschke, Petra, Krause, Beate, Buschhorn, Samuel T., Köpke, Ulf, Müller, Michael T., Villmow, Tobias, Schulte, Karl

The paper reports the effect of using of a three roll mill as additional dispersion step after twin-screw melt extrusion of nanocomposites containing thermoplastic polymers and multiwalled carbon nanotubes. The three roll milling technology was adapted to elevated temperatures of up to 180 °C and examples are shown for its use in processing of different pre-compounded thermoplastic polymer composites based on polypropylene, polycaprolactone and ethylene-vinyl acetate. The aim is to enhance the state of dispersion achieved by the previous melt extrusion step. In particular, depending on the state of dispersion before three roll milling and the adapted conditions, like number of runs and gap sizes, a reduction of number and size of remaining primary nanotube agglomerates was found. This was studied using light microscopy. The resulting improvements in mechanical properties were assessed and could be attributed to the improved dispersion. In some cases agglomerate free samples could be achieved after the three roll milling process. © 2012 Elsevier Ltd.

Loading...
Thumbnail Image
Item

Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites

2014, Guo, Jiaxi, Liu, Yanjun, Prada-Silvy, Ricardo, Tan, Yongqiang, Azad, Samina, Krause, Beate, Pötschke, Petra, Grady, Brian P.

Two multi-walled carbon nanotubes (MWCNTs) having relatively high aspect ratios of 313 and 474 with approximately the same diameter were melt mixed with polycarbonate (PC) in a twin-screw conical micro compounder. The effects of aspect ratio on the electrical, mechanical, and thermal properties of the PC/MWCNT composites were investigated. Electrical conductivities and storage moduli of the filled samples are found to be independent of the starting aspect ratio for these high aspect ratio tubes; although the conductivities and storage moduli are still significantly higher than values of composites made with nanotubes having more commercially common aspect ratios of ∼100. Transmission electron microscopy results suggest that melt-mixing reduces these longer nanotubes to the same length, but still approximately two times longer than the length of commercially common aspect ratio tubes after melt-mixing. Molecular weight measurements show that during melt-mixing the longer nanotubes significantly degrade the molecular weight of the polymer as compared to very similar nanotubes with aspect ratio ∼100. Because of the molecular weight reduction glass transition temperatures predictably show a large decrease with increasing nanotube concentration. © 2013 Wiley Periodicals, Inc.

Loading...
Thumbnail Image
Item

Ultralow percolation threshold in polyamide 6.6/MWCNT composites

2015, Krause, Beate, Boldt, Regine, Häußler, Liane, Pötschke, Petra

When incorporating multiwalled carbon nanotubes (MWCNTs) synthesised by the aerosol-CVD method using different solvents into polyamide 6.6 (PA66) by melt mixing an ultralow electrical percolation threshold of 0.04. wt.% was found. This very low threshold was assigned to the specific characteristic of the MWCNTs for which a very high aspect ratio, a good dispersability in aqueous surfactant dispersions, and relatively low oxygen content near the surface were measured. The investigation of the composites by transmission electron microscopy on ultrathin cuts as well as by scanning electron microscopy combined with charge contrast imaging on compression moulded plates illustrated a good MWCNT dispersion within the PA66 matrix and that the very high aspect ratio of the nanotubes remained even after melt processing. Additionally, the thermal behaviour of the PA66 composites was investigated using differential scanning calorimetry (DSC) showing that the addition of only 0.05. wt.% MWCNT leads to an increase of the onset crystallization temperature of 11. K.

Loading...
Thumbnail Image
Item

Does the Processing Method Resulting in Different States of an Interconnected Network of Multiwalled Carbon Nanotubes in Polymeric Blend Nanocomposites Affect EMI Shielding Properties?

2018, Pawar, Shital Patangrao, Rzeczkowski, Piotr, Pötschke, Petra, Krause, Beate, Bose, Suryasarathi

Electromagnetic interference (EMI), an unwanted phenomenon, often affects the reliability of precise electronic circuitry. To prevent this, an effective shielding is prerequisite to protect the electronic devices. In this study, an attempt was made to understand how processing of polymeric blend nanocomposites involving multiwalled carbon nanotubes (MWCNTs) affects the evolving interconnected network structure of MWCNTs and eventually their EMI shielding properties. Thereby, the overall blend morphology and especially the connectivity of the polycarbonate (PC) component, in which the MWCNTs tend to migrate, as well as the perfectness of their migration, and the state of nanotube dispersion are considered. For this purpose, blends of varying composition of PC and poly(methyl methacrylate) were chosen as a model system as they show a phase diagram with lower critical solution temperature type of characteristic. Such blends were processed in two different ways: solution mixing (from the homogeneous state) and melt mixing (in the biphasic state). In both the processes, MWCNTs (3 wt %) were mixed into the blends, and the evolved structures (after phase separation induced by annealing in solution-mixed blends) and the quenched structures (as the blends exit the extruder) were systematically studied using transmission electron microscopy (TEM). Both the set of blends were subjected to the same thermal history, however, under different conditions such as under quiescent conditions (in the case of solution mixing) and under shear (in the case of melt mixing). The electrical volume conductivity and the evolved morphologies of these blend nanocomposites were evaluated and correlated with the measured EMI shielding behavior. The results indicated that irrespective of the type of processing, the MWCNTs localized in the PC component; driven by thermodynamic factors and depending on the blend composition, sea-island, cocontinuous, and phase-inverted structures evolved. Interestingly, the better interconnected network structures of MWCNTs observed using TEM in the solution-mixed samples together with larger nanotube lengths resulted in higher EMI shielding properties (-27 dB at 18 GHz) even if slightly higher electrical volume conductivities were observed in melt-mixed samples. Moreover, the shielding was absorption-driven, facilitated by the dense network of MWCNTs in the PC component of the blends, at any given concentration of nanotubes. Taken together, this study highlights the effects of different blend nanocomposite preparation methods (solution and melt) and the developed morphology and nanotube network structure in MWCNT filled blend nanocomposites on the EMI shielding behavior.

Loading...
Thumbnail Image
Item

Electrical and melt rheological characterization of PC and co-continuous PC/SAN blends filled with CNTs: Relationship between melt-mixing parameters, filler dispersion, and filler aspect ratio

2018, Liebscher, Marco, Domurath, Jan, Krause, Beate, Saphiannikova, Marina, Heinrich, Gert, Pötschke, Petra

Electrical and melt rheological properties of melt-mixed polycarbonate (PC) and co-continuous PC/poly(styrene–acrylonitrile) (SAN) blends with carbon nanotubes (CNTs) are investigated. Using two sets of mixing parameters, different states of filler dispersion are obtained. With increasing CNT dispersion, an increase in electrical resistivity near the percolation threshold of PC–CNT composites and (PC + CNT)/SAN blends is observed. This suggests that the higher mixing energies required for better dispersion also result in a more severe reduction of the CNT aspect ratio; this effect was proven by CNT length measurements. Melt rheological studies show higher reinforcing effects for composites with worse dispersion. The Eilers equation, describing the melt viscosity as function of filler content, was used to fit the data and to obtain information about an apparent aspect ratio change, which was in accordance with measured CNT length reduction. Such fitting could be also transferred to the blends and serves for a qualitatively based discussion. © 2017 Wiley Periodicals

Loading...
Thumbnail Image
Item

Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials

2018, Gnanaseelan, Minoj, Chen, Yian, Luo, Jinji, Krause, Beate, Pionteck, Jürgen, Pötschke, Petra, Qu, Haisong

Thermoelectric materials based on cellulose/carbon nanotube (CNT) nanocomposites have been developed by a facile approach and the effects of amount (2–10 wt%) and types of CNTs (single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs)) on the morphology (films and aerogels) and the thermoelectric properties of the nanocomposites have been investigated. Composite films based on SWCNTs showed significantly higher electrical conductivity (5 S/cm at 10 wt%) and Seebeck coefficient (47.2 μV/K at 10 wt%) compared to those based on MWCNTs (0.9 S/cm and 11 μV/K, respectively). Lyophilization, leading to development of aerogels with sub-micron sized pores, decreased the electrical conductivity for both types by one order of magnitude, but did not affect the Seebeck coefficient of MWCNT based nanocomposites. For SWCNT containing aerogels, higher Seebeck coefficients than for films were measured at 3 and 4 wt% but significantly lower values at higher loadings. CNT addition increased the thermal conductivity from 0.06 to 0.12 W/(m∙K) in the films, whereas the lyophilization significantly reduced it towards values between 0.01 and 0.09 W/(m∙K) for the aerogels. The maximum Seebeck coefficient, power factor, and ZT observed in this study are 49 μV/K for aerogels with 3 wt% SWCNTs, 1.1 μW/(m∙K2) for composite films with 10 wt% SWCNTs, and 7.4 × 10−4 for films with 8 wt% SWCNTs, respectively.