Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures

Abstract

The paper reports the effect of using of a three roll mill as additional dispersion step after twin-screw melt extrusion of nanocomposites containing thermoplastic polymers and multiwalled carbon nanotubes. The three roll milling technology was adapted to elevated temperatures of up to 180 °C and examples are shown for its use in processing of different pre-compounded thermoplastic polymer composites based on polypropylene, polycaprolactone and ethylene-vinyl acetate. The aim is to enhance the state of dispersion achieved by the previous melt extrusion step. In particular, depending on the state of dispersion before three roll milling and the adapted conditions, like number of runs and gap sizes, a reduction of number and size of remaining primary nanotube agglomerates was found. This was studied using light microscopy. The resulting improvements in mechanical properties were assessed and could be attributed to the improved dispersion. In some cases agglomerate free samples could be achieved after the three roll milling process. © 2012 Elsevier Ltd.

Description
Keywords
A. Carbon nanotubes, A. Polymer-matrix composites (PMCs), B. Mechanical property, D. Optical microscopy, Dispersion
Citation
Pötschke, P., Krause, B., Buschhorn, S. T., Köpke, U., Müller, M. T., Villmow, T., & Schulte, K. (2013). Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures. 74. https://doi.org/10.1016/j.compscitech.2012.10.010
Collections
License
CC BY-NC-ND 4.0 Unported