Search Results

Now showing 1 - 4 of 4
  • Item
    Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source
    ([London] : Nature Publishing Group UK, 2017) Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J. Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud
    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-Angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.
  • Item
    Publisher Correction: Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source (Nature communications (2017) 8 1 (493))
    ([London] : Nature Publishing Group UK, 2018) Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; Vrakking, Marc J.; Fennel, Thomas; Rouzée, Arnaud
    In the original version of this Article, the affiliation for Luca Poletto was incorrectly given as 'European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Hamburg, Germany', instead of the correct 'CNR, Istituto di Fotonica e Nanotecnologie Padova, Via Trasea 7, 35131 Padova, Italy'. This has now been corrected in both the PDF and HTML versions of the Article.
  • Item
    Publisher Correction: Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters (Nature communications (2017) 8 1 (1181))
    ([London] : Nature Publishing Group UK, 2018) Passig, Johannes; Zherebtsov, Sergey; Irsig, Robert; Arbeiter, Mathias; Peltz, Christian; Göde, Sebastian; Skruszewicz, Slawomir; Meiwes-Broer, Karl-Heinz; Tiggesbäumker, Josef; Kling, Matthias F.; Fennel, Thomas
    The original PDF version of this Article contained an error in Equation 1. The original HTML version of this Article contained errors in Equation 2 and Equation 4. These errors have now been corrected in both the PDF and the HTML versions of the Article. The original PDF version of this Article contained an error in Equation 1. A dot over the first occurrence of the variable ri was missing, and incorrectly read: (Formula Presented). The correct form of Equation 1 is as follows: (Formula Presented). This has now been corrected in the PDF version of the Article. The HTML version was correct from the time of publication. The original HTML version of this Article contained errors in Equation 2 and Equation 4. In Equation 2, a circle over the first occurrence of the variable ri replaced the intended dot, and incorrectly read: (Formula Presented). The correct form of Equation 2 is as follows: (Formula Presented). In Equation 4, circles over the first and fifth occurrences of the variable ri replaced the intended dots, and incorrectly read: (Formula Presented). The correct form of Equation 4 is as follows: (Formula Presented). This has now been corrected in the HTML version of the Article. The PDF version was correct from the time of publication.
  • Item
    Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters
    ([London] : Nature Publishing Group UK, 2017) Passig, Johannes; Zherebtsov, Sergey; Irsig, Robert; Arbeiter, Mathias; Peltz, Christian; Göde, Sebastian; Skruszewicz, Slawomir; Meiwes-Broer, Karl-Heinz; Tiggesbäumker, Josef; Kling, Matthias F.; Fennel, Thomas
    In the strong-field photoemission from atoms, molecules, and surfaces, the fastest electrons emerge from tunneling and subsequent field-driven recollision, followed by elastic backscattering. This rescattering picture is central to attosecond science and enables control of the electron's trajectory via the sub-cycle evolution of the laser electric field. Here we reveal a so far unexplored route for waveform-controlled electron acceleration emerging from forward rescattering in resonant plasmonic systems. We studied plasmon-enhanced photoemission from silver clusters and found that the directional acceleration can be controlled up to high kinetic energy with the relative phase of a two-color laser field. Our analysis reveals that the cluster's plasmonic near-field establishes a sub-cycle directional gate that enables the selective acceleration. The identified generic mechanism offers robust attosecond control of the electron acceleration at plasmonic nanostructures, opening perspectives for laser-based sources of attosecond electron pulses.