Search Results

Now showing 1 - 10 of 14
  • Item
    Semiconductor saturable absorber mirror mode-locked Yb:YAP laser
    (Washington, DC : Soc., 2022) Lin, Zhang-Lang; Xue, Wen-Ze; Zeng, Huang-Jun; Zhang, Ge; Zhao, Yongguang; Xu, Xiaodong; Xu, Jun; Loiko, Pavel; Mateos, Xavier; Lin, Haifeng; Petrov, Valentin; Wang, Li; Chen, Weidong
    We report on sub-30 fs pulse generation from a semiconductor saturable absorber mirror mode-locked Yb:YAP laser. Pumping by a spatially single-mode Yb fiber laser at 979 nm, soliton pulses as short as 29 fs were generated at 1091 nm with an average output power of 156 mW and a pulse repetition rate of 85.1 MHz. The maximum output power of the mode-locked Yb:YAP laser amounted to 320 mW for slightly longer pulses (32 fs) at an incident pump power of 1.52 W, corresponding to a peak power of 103 kW and an optical efficiency of 20.5%. To the best of our knowledge, this result represents the shortest pulses ever achieved from any solid-state Yb laser mode-locked by a slow, i.e., physical saturable absorber.
  • Item
    Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy
    (Melville, NY : AIP Publishing, 2017) Heiner, Zsuzsanna; Petrov, Valentin; Mero, Mark
    We present a high-efficiency optical parametric source for broadband vibrational sum-frequency generation (BB-VSFG) for the chemically important mid-infrared spectral range at 2800-3600 cm-1 to study hydrogen bonding interactions affecting the structural organization of biomolecules at water interfaces. The source consists of a supercontinuum-seeded, dual-beam optical parametric amplifier with two broadband infrared output beams and a chirped sum-frequency mixing stage providing narrowband visible pulses with adjustable bandwidth. Utilizing a pulse energy of only 60 μJ from a turn-key, 1.03-μm pump laser operating at a repetition rate of 100 kHz, the source delivers 6-cycle infrared pulses at 1.5 and 3.2 μm with pulse energies of 4.6 and 1.8 μJ, respectively, and narrowband pulses at 0.515 μm with a pulse energy of 5.0 μJ. The 3.2-μm pulses are passively carrier envelope phase stabilized with fluctuations at the 180-mrad level over a 10-s time period. The 1.5-μm beamline can be exploited to deliver pump pulses for time-resolved studies after suitable frequency up-conversion. The high efficiency, stability, and two orders of magnitude higher repetition rate of the source compared to typically employed systems offer great potential for providing a boost in sensitivity in BB-VSFG experiments at a reduced cost.
  • Item
    Graphene mode-locked Tm,Ho-codoped crystalline garnet laser producing 70-fs pulses near 21 µm
    (Washington, DC : OSA, 2019) Zhao, Yongguang; Chen, Weidong; Wang, Li; Wang, Yicheng; Pan, Zhongben; Dai, Xiaojun; Yuan, Hualei; Cai, Huaqiang; Zhang, Yan; Bae, Ji Eun; Park, Tae Gwan; Rotermund, Fabian; Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Shen, Deyuan; Griebner, Uwe; Petrov, Valentin
    Bilayer graphene synthesized by chemical vapor deposition is successfully applied as a saturable absorber (SA) for the passive mode-locking of a Tm,Ho:CLNGG laser at 2093nm. Near transform-limited pulses as short as 70 fs, i.e., 10 optical cycles, are produced at a 89 MHz repetition rate with 69 mW average output power. To the best of our knowledge, these are the shortest pulses ever reported from graphene-SA mode-locked Tm, or Ho-lasers in the 2 µm spectral region, including bulk and fiber lasers.
  • Item
    35 W continuous-wave Ho:YAG single-crystal fiber laser
    (Cambridge : Cambridge Univ. Press, 2020) Zhao, Yongguang; Wang, Li; Chen, Weidong; Wang, Jianlei; Song, Qingsong; Xu, Xiaodong; Liu, Ying; Shen, Deyuan; Xu, Jun; Mateos, Xavier; Loiko, Pavel; Wang, Zhengping; Xu, Xinguang; Griebner, Uwe; Petrov, Valentin
    We report on a high-power Ho:YAG single-crystal fiber (SCF) laser inband pumped by a high-brightness Tm-fiber laser at 1908 nm. The Ho:YAG SCF grown by the micro-pulling-down technique exhibits a propagation loss of at. A continuous-wave output power of 35.2 W is achieved with a slope efficiency of 42.7%, which is to the best of our knowledge the highest power ever reported from an SCF-based laser in the 2 spectral range. © 2020 The Author(s). Published by Cambridge University Press in association with Chinese Laser Press.
  • Item
    Sub-100 fs mode-locked Tm:CLTGG laser
    (Washington, DC : Soc., 2021) Wang, Li; Chen, Weidong; Pan, Zhongben; Loiko, Pavel; Bae, Ji Eun; Rotermund, Fabian; Mateos, Xavier; Griebner, Uwe; Petrov, Valentin
    We report on the first sub-100 fs mode-locked laser operation of a Tm3+-doped disordered calcium lithium tantalum gallium garnet (Tm:CLTGG) crystal. Soliton mode-locking was initiated and stabilized by a transmission-type single-walled carbon nanotube saturable absorber. Pulses as short as 69 fs were achieved at a central wavelength of 2010.4 nm with an average power of 28 mW at a pulse repetition rate of ∼87.7 MHz. In the sub-100 fs regime, the maximum average output power amounted to 103 mW.
  • Item
    Tm3+-doped calcium lithium tantalum gallium garnet (Tm:CLTGG): novel laser crystal
    (Washington, DC : OSA, 2021) Alles, Adrian; Pan, Zhongben; Loiko, Pavel; Serres, Josep Maria; Slimi, Sami; Yingming, Shawuti; Tang, Kaiyang; Wang, Yicheng; Zhao, Yongguang; Dunina, Elena; Kornienko, Alexey; Camy, Patrice; Chen, Weidong; Wang, Li; Griebner, Uwe; Petrov, Valentin; Solé, Rosa Maria; Aguiló, Magdalena; Díaz, Francesc; Mateos, Xavier
    We report on the development of a novel laser crystal with broadband emission properties at ∼2 µm – a Tm3+,Li+-codoped calcium tantalum gallium garnet (Tm:CLTGG). The crystal is grown by the Czochralski method. Its structure (cubic, sp. gr. 𝐼𝑎3¯𝑑, a = 12.5158(0) Å) is refined by the Rietveld method. Tm:CLTGG exhibits a relatively high thermal conductivity of 4.33 Wm-1K-1. Raman spectroscopy confirms a weak concentration of vacancies due to the charge compensation provided by Li+ codoping. The transition probabilities of Tm3+ ions are determined using the modified Judd-Ofelt theory yielding the intensity parameters Ω2 = 5.185, Ω4 = 0.650, Ω6 = 1.068 [10−20 cm2] and α = 0.171 [10−4 cm]. The crystal-field splitting of the Tm3+ multiplets is revealed at 10 K. The first diode-pumped Tm:CLTGG laser generates 1.08 W at ∼2 µm with a slope efficiency of 23.8%. The Tm3+ ions in CLTGG exhibit significant inhomogeneous spectral broadening due to the structure disorder (a random distribution of Ta5+ and Ga3+ cations over octahedral and tetrahedral lattice sites) leading to smooth and broad gain profiles (bandwidth: 130 nm) extending well above 2 µm and rendering Tm:CLTGG suitable for femtosecond pulse generation.
  • Item
    Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018-10-23) Loiko, Pavel; Bora, Tanujjal; Serres, Josep Maria; Yu, Haohai; Aguiló, Magdalena; Díaz, Francesc; Griebner, Uwe; Petrov, Valentin; Mateos, Xavier; Dutta, Joydeep
    Zinc oxide (ZnO) nanorods (NRs) oriented along the crystallographic [001] axis are grown by the hydrothermal method on glass substrates. The ZnO NRs exhibit a broadband (1–2 µm) near-IR absorption ascribed to the singly charged zinc vacancy VZn−1. The saturable absorption of the ZnO NRs is studied at ≈1 µm under picosecond excitation, revealing a low saturation intensity, ≈10 kW/cm2, and high fraction of the saturable losses. The ZnO NRs are applied as saturable absorbers in diode-pumped Yb (≈1.03 µm) and Tm (≈1.94 µm) lasers generating nanosecond pulses. The ZnO NRs grown on various optical surfaces are promising broadband saturable absorbers for nanosecond near-IR lasers in bulk and waveguide geometries.
  • Item
    Spectroscopy of solid-solution transparent sesquioxide laser ceramic Tm:LuYO3
    (Washington, DC : OSA, 2022) Eremeev, Kirill; Loiko, Pavel; Braud, Alain; Camy, Patrice; Zhang, Jian; Xu, Xiaodong; Zhao, Yongguang; Liu, Peng; Balabanov, Stanislav; Dunina, Elena; Kornienko, Alexey; Fomicheva, Liudmila; Mateos, Xavier; Griebner, Uwe; Petrov, Valentin; Wang, Li; Chen, Weidong
    We report on a detailed spectroscopic study of a Tm3+-doped transparent sesquioxide ceramic based on a solid-solution (lutetia – yttria, LuYO3) composition. The ceramic was fabricated using commercial oxide powders by hot isostatic pressing at 1600°C for 3 h at 190 MPa argon pressure. The most intense Raman peak in Tm:LuYO3 at 385.4 cm−1 takes an intermediate position between those for the parent compounds and is notably broadened (linewidth: 12.8 cm−1). The transition intensities of Tm3+ ions were calculated using the Judd-Ofelt theory; the intensity parameters are W2 = 2.537, W4 = 1.156 and W6 = 0.939 [1020 cm2]. For the 3F4 → 3H6 transition, the stimulated-emission cross-section amounts to 0.27 × 10−20 cm2 at 2059nm and the reabsorption-free luminescence lifetime is 3.47 ms (the 3F4 radiative lifetime is 3.85 ± 0.1 ms). The Tm3+ ions in the ceramic exhibit long-wave multiphonon-assisted emission extending up to at least 2.35 µm; a phonon sideband at 2.23 µm is observed and explained by coupling between electronic transitions and the dominant Raman mode of the sesquioxides. Low temperature (12 K) spectroscopy reveals a significant inhomogeneous spectral broadening confirming formation of a substitutional solid-solution. The mixed ceramic is promising for ultrashort pulse generation at >2 µm.
  • Item
    43 W, 1.55 μm and 12.5 W, 3.1 μm dual-beam, sub-10 cycle, 100 kHz optical parametric chirped pulse amplifier
    (Washington, DC : Soc., 2018) Mero, Mark; Heiner, Zsuzsanna; Petrov, Valentin; Rottke, Horst; Branchi, Federico; Thomas, Gabrielle M.; Vrakking, Marc J. J.
    We present a 100 kHz optical parametric chirped pulse amplifier (OPCPA) developed for strong-field attosecond physics and soft-x-ray transient absorption experiments. The system relies on noncollinear potassium titanyl arsenate booster OPCPAs and is pumped by a 244 W, 1.1 ps Yb:YAG Innoslab chirped pulse laser amplifier. Two optically synchronized infrared output beams are simultaneously available: a 430 μJ, 51 fs, carrier-envelope phase stable beam at 1.55 μm and an angular-dispersion-compensated, 125 μJ, 73 fs beam at 3.1 μm.
  • Item
    Watt-level femtosecond Tm-doped “mixed” sesquioxide ceramic laser in-band pumped by a Raman fiber laser at 1627 nm
    (Washington, DC : Soc., 2022) Zhang, Ning; Wang, Zhanxin; Liu, Shande; Jing, Wei; Huang, Hui; Huang, Zixuan; Tian, Kangzhen; Yang, Zhiyong; Zhao, Yongguang; Griebner, Uwe; Petrov, Valentin; Chen, Weidong
    We report on a semiconductor saturable absorber mirror mode-locked Tm:(Lu,Sc)2O3 ceramic laser in-band pumped by a Raman fiber laser at 1627 nm. The nonlinear refractive index (n2) of the Tm:(Lu,Sc)2O3 ceramic has been measured to be 4.66 × 10-20 m2/W at 2000 nm. An average output power up to 1.02 W at 2060 nm is achieved for transform-limited 280-fs pulses at a repetition rate of 86.5 MHz, giving an optical efficiency with respect to the absorbed pump power of 36.4%. Pulses as short as 66 fs at 2076 nm are produced at the expense of output power (0.3 W), corresponding to a spectral bandwidth of 69 nm. The present work reveals the potential of Tm3+-doped sesquioxide transparent ceramics for power scaling of femtosecond mode-locked bulk lasers emitting in the 2-μm spectral range.