Search Results

Now showing 1 - 6 of 6
  • Item
    Pedestrian exposure to black carbon and PM2.5 emissions in urban hot spots: new findings using mobile measurement techniques and flexible Bayesian regression models
    (Basingstoke : Nature Publ. Group, 2021) Alas, Honey Dawn; Stöcker, Almond; Umlauf, Nikolaus; Senaweera, Oshada; Pfeifer, Sascha; Greven, Sonja; Wiedensohler, Alfred
    Background Data from extensive mobile measurements (MM) of air pollutants provide spatially resolved information on pedestrians’ exposure to particulate matter (black carbon (BC) and PM2.5 mass concentrations). Objective We present a distributional regression model in a Bayesian framework that estimates the effects of spatiotemporal factors on the pollutant concentrations influencing pedestrian exposure. Methods We modeled the mean and variance of the pollutant concentrations obtained from MM in two cities and extended commonly used lognormal models with a lognormal-normal convolution (logNNC) extension for BC to account for instrument measurement error. Results The logNNC extension significantly improved the BC model. From these model results, we found local sources and, hence, local mitigation efforts to improve air quality, have more impact on the ambient levels of BC mass concentrations than on the regulated PM2.5. Significance Firstly, this model (logNNC in bamlss package available in R) could be used for the statistical analysis of MM data from various study areas and pollutants with the potential for predicting pollutant concentrations in urban areas. Secondly, with respect to pedestrian exposure, it is crucial for BC mass concentration to be monitored and regulated in areas dominated by traffic-related air pollution.
  • Item
    Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions: procedures and unit-to-unit variabilities
    (Katlenburg-Lindau : European Geosciences Union, 2021) Cuesta-Mosquera, Andrea; Močnik, Griša; Drinovec, Luka; Müller, Thomas; Pfeifer, Sascha; Minguillón, María Cruz; Briel, Björn; Buckley, Paul; Dudoitis, Vadimas; Fernández-García, Javier; Fernández-Amado, María; Ferreira De Brito, Joel; Riffault, Veronique; Flentje, Harald; Heffernan, Eimear; Kalivitis, Nikolaos; Kalogridis, Athina-Cerise; Keernik, Hannes; Marmureanu, Luminita; Luoma, Krista; Marinoni, Angela; Pikridas, Michael; Schauer, Gerhard; Serfozo, Norbert; Servomaa, Henri; Titos, Gloria; Yus-Díez, Jesús; Zioła, Natalia; Wiedensohler, Alfred
    Aerosolized black carbon is monitored worldwide to quantify its impact on air quality and climate. Given its importance, measurements of black carbon mass concentrations must be conducted with instruments operating in qualitychecked and ensured conditions to generate data which are reliable and comparable temporally and geographically. In this study, we report the results from the largest characterization and intercomparison of filter-based absorption photometers, the Aethalometer model AE33, belonging to several European monitoring networks. Under controlled laboratory conditions, a total of 23 instruments measured mass concentrations of black carbon from three wellcharacterized aerosol sources: synthetic soot, nigrosin particles, and ambient air from the urban background of Leipzig, Germany. The objective was to investigate the individual performance of the instruments and their comparability; we analyzed the response of the instruments to the different aerosol sources and the impact caused by the use of obsolete filter materials and the application of maintenance activities. Differences in the instrument-to-instrument variabilities from equivalent black carbon (eBC) concentrations reported at 880 nm were determined before maintenance activities (for soot measurements, average deviation from total least square regression was-2.0% and the range-16% to 7 %; for nigrosin measurements, average deviation was 0.4% and the range-15% to 17 %), and after they were carried out (for soot measurements, average deviation was-1.0% and the range-14% to 8 %; for nigrosin measurements, the average deviation was 0.5%and the range-12%to 15 %). The deviations are in most of the cases explained by the type of filter material employed by the instruments, the total particle load on the filter, and the flow calibration. The results of this intercomparison activity show that relatively small unit-to-unit variability of AE33-based particle light absorbing measurements is possible with wellmaintained instruments. It is crucial to follow the guidelines for maintenance activities and the use of the proper filter tape in the AE33 to ensure high quality and comparable black carbon (BC) measurements among international observational networks. © 2021 Author(s). This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Importance of size representation and morphology in modelling optical properties of black carbon: comparison between laboratory measurements and model simulations
    (Katlenburg-Lindau : Copernicus, 2022) Romshoo, Baseerat; Pöhlker, Mira; Wiedensohler, Alfred; Pfeifer, Sascha; Saturno, Jorge; Nowak, Andreas; Ciupek, Krzysztof; Quincey, Paul; Vasilatou, Konstantina; Ess, Michaela N.; Gini, Maria; Eleftheriadis, Konstantinos; Robins, Chris; Gaie-Levrel, François; Müller, Thomas
    Black carbon (BC) from incomplete combustion of biomass or fossil fuels is the strongest absorbing aerosol component in the atmosphere. Optical properties of BC are essential in climate models for quantification of their impact on radiative forcing. The global climate models, however, consider BC to be spherical particles, which causes uncertainties in their optical properties. Based on this, an increasing number of model-based studies provide databases and parameterization schemes for the optical properties of BC, using more realistic fractal aggregate morphologies. In this study, the reliability of the different modelling techniques of BC was investigated by comparing them to laboratory measurements. The modelling techniques were examined for bare BC particles in the first step and for BC particles with organic material in the second step. A total of six morphological representations of BC particles were compared, three each for spherical and fractal aggregate morphologies. In general, the aggregate representation performed well for modelling the particle light absorption coefficient σabs, single-scattering albedo SSA, and mass absorption cross-section MACBC for laboratory-generated BC particles with volume mean mobility diameters dp,V larger than 100nm. However, for modelling Ångström absorption exponent AAE, it was difficult to suggest a method due to size dependence, although the spherical assumption was in better agreement in some cases. The BC fractal aggregates are usually modelled using monodispersed particles, since their optical simulations are computationally expensive. In such studies, the modelled optical properties showed a 25% uncertainty in using the monodisperse size method. It is shown that using the polydisperse size distribution in combination with fractal aggregate morphology reduces the uncertainty in measured σabs to 10% for particles with dp,V between 60-160nm. Furthermore, the sensitivities of the BC optical properties to the various model input parameters such as the real and imaginary parts of the refractive index (mre and mim), the fractal dimension (Df), and the primary particle radius (app) of an aggregate were investigated. When the BC particle is small and rather fresh, the change in the Df had relatively little effect on the optical properties. There was, however, a significant relationship between app and the particle light scattering, which increased by a factor of up to 6 with increasing total particle size. The modelled optical properties of BC are well aligned with laboratory-measured values when the following assumptions are used in the fractal aggregate representation: mre between 1.6 and 2, mim between 0.50 and 1, Df from 1.7 to 1.9, and app between 10 and 14nm. Overall, this study provides experimental support for emphasizing the importance of an appropriate size representation (polydisperse size method) and an appropriate morphological representation for optical modelling and parameterization scheme development of BC.
  • Item
    Optical properties of coated black carbon aggregates: numerical simulations, radiative forcing estimates, and size-resolved parameterization scheme
    (Katlenburg-Lindau : European Geosciences Union, 2021) Romshoo, Baseerat; Müller, Thomas; Pfeifer, Sascha; Saturno, Jorge; Nowak, Andreas; Ciupek, Krzysztof; Quincey, Paul; Wiedensohler, Alfred
    The formation of black carbon fractal aggregates (BCFAs) from combustion and subsequent ageing involves several stages resulting in modifications of particle size, morphology, and composition over time. To understand and quantify how each of these modifications influences the BC radiative forcing, the optical properties of BCFAs are modelled. Owing to the high computational time involved in numerical modelling, there are some gaps in terms of data coverage and knowledge regarding how optical properties of coated BCFAs vary over the range of different factors (size, shape, and composition). This investigation bridged those gaps by following a state-of-the-art description scheme of BCFAs based on morphology, composition, and wavelength. The BCFA optical properties were investigated as a function of the radius of the primary particle (ao), fractal dimension (Df), fraction of organics (forganics), wavelength (λ), and mobility diameter (Dmob). The optical properties are calculated using the multiple-sphere T-matrix (MSTM) method. For the first time, the modelled optical properties of BC are expressed in terms of mobility diameter (Dmob), making the results more relevant and relatable for ambient and laboratory BC studies. Amongst size, morphology, and composition, all the optical properties showed the highest variability with changing size. The cross sections varied from 0.0001 to 0.1 μm2 for BCFA Dmob ranging from 24 to 810nm. It has been shown that MACBC and single-scattering albedo (SSA) are sensitive to morphology, especially for larger particles with Dmobg > 100 nm. Therefore, while using the simplified core-shell representation of BC in global models, the influence of morphology on radiative forcing estimations might not be adequately considered. The Ångström absorption exponent (AAE) varied from 1.06 up to 3.6 and increased with the fraction of organics (forganics). Measurement results of AAE ≫1 are often misinterpreted as biomass burning aerosol, it was observed that the AAE of purely black carbon particles can be ≫1 in the case of larger BC particles. The values of the absorption enhancement factor (Eλ) via coating were found to be between 1.01 and 3.28 in the visible spectrum. The Eλ was derived from Mie calculations for coated volume equivalent spheres and from MSTM for coated BCFAs. Mie-calculated enhancement factors were found to be larger by a factor of 1.1 to 1.5 than their corresponding values calculated from the MSTM method. It is shown that radiative forcings are highly sensitive to modifications in morphology and composition. The black carbon radiative forcing FTOA (Wgm-2) decreases up to 61% as the BCFA becomes more compact, indicating that global model calculations should account for changes in morphology. A decrease of more than 50% in FTOA was observed as the organic content of the particle increased up to 90%. The changes in the ageing factors (composition and morphology) in tandem result in an overall decrease in the FTOA. A parameterization scheme for optical properties of BC fractal aggregates was developed, which is applicable for modelling, ambient, and laboratory-based BC studies. The parameterization scheme for the cross sections (extinction, absorption, and scattering), single-scattering albedo (SSA), and asymmetry parameter (g) of pure and coated BCFAs as a function of Dmob were derived from tabulated results of the MSTM method. Spanning an extensive parameter space, the developed parameterization scheme showed promisingly high accuracy up to 98% for the cross sections, 97% for single-scattering albedos (SSAs), and 82% for the asymmetry parameter (g). © 2021 The Author(s).
  • Item
    Real World Vehicle Emission Factors for Black Carbon Derived from Longterm In-Situ Measurements and Inverse Modelling
    (Basel : MDPI, 2021) Wiesner, Anne; Pfeifer, Sascha; Merkel, Maik; Tuch, Thomas; Weinhold, Kay; Wiedensohler, Alfred
    Black carbon (BC) is one of the most harmful substances within traffic emissions, contributing considerably to urban pollution. Nevertheless, it is not explicitly regulated and the official laboratory derived emission factors are barely consistent with real world emissions. However, realistic emission factors (EFs) are crucial for emission, exposure, and climate modelling. A unique dataset of 10 years (2009–2018) of roadside and background measurements of equivalent black carbon (eBC) concentration made it possible to estimate real world traffic EFs and observe their change over time. The pollutant dispersion was modelled using the Operational Street Pollution Model (OSPM). The EFs for eBC are derived for this specific measurement site in a narrow but densely trafficked street canyon in Leipzig, Germany. The local conditions and fleet composition can be considered as typical for an inner-city traffic scenario in a Western European city. The fleet is composed of 22% diesel and 77% petrol cars in the passenger car segment, with an unknown proportion of direct injection engines. For the mixed fleet the eBC EF was found to be 48 mg km−1 in the long-term average. Accelerated by the introduction of a low emission zone, the EFs decreased over the available time period from around 70 mg km−1 to 30 – 40 mg km−1 . Segregation into light (<3.5 t) and heavy (>3.5 t) vehicles resulted in slightly lower estimates for the light vehicles than for the mixed fleet, and one order of magnitude higher values for the heavy vehicles. The found values are considerably higher than comparable emission standards for particulate matter and even the calculations of the Handbook Emission Factors for Road Transport (HBEFA), which is often used as emission model input. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    The influence of the baseline drift on the resulting extinction values of a cavity attenuated phase shift-based extinction monitor (CAPS PMex)
    (Katlenburg-Lindau : Copernicus, 2020) Pfeifer, Sascha; Müller, Thomas; Freedman, Andrew; Wiedensohler, Alfred
    The effect of the baseline drift on the resulting extinction values of three cavity attenuated phase shift-based extinction monitors (CAPS PMex) with different wavelengths and the respective correlation with NO2 was analysed for an urban background station. A drift of more than 0.8 Mm−1min−1 was observed for ambient air, with high probability caused by traffic-emissions-driven changes in carrier gas composition. The baseline drift leads to characteristic measurement artefacts for particle extinction. Artificial particle extinction values of approximately 4 Mm−1 were observed using a baseline period of 5 min. These values can be even higher for longer baseline periods. Two methods are shown to minimize this effect. Modified continuous baseline values are calculated in a post-processing step using simple linear interpolation and cubic smoothing splines. Both methods are useful to reduce artefacts, although the use of cubic smoothing splines gives slightly better results. The extinction artefacts are diminished and the effective scattering of the resulting extinction values is reduced by about 50 %.