Search Results

Now showing 1 - 10 of 16
  • Item
    A crystalline anionic complex of scandium nitride endometallofullerene: Experimental observation of single-bonded (Sc3N@Ih-C80−)2 dimers
    (Cambridge : Royal Society of Chemistry, 2016) Konarev, Dmitri V.; Zorina, Leokadiya V.; Khasanov, Salavat S.; Popov, Alexey A.; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N.
    Reduction of scandium nitride clusterfullerene, Sc3N@Ih-C80, by sodium fluorenone ketyl in the presence of cryptand[2,2,2] allows the crystallization of the {cryptand[2,2,2](Na+)}2(Sc3N@Ih-C80−)2·2.5C6H4Cl2 (1) salt. The Sc3N@Ih-C80˙− radical anions are dimerized to form single-bonded (Sc3N@Ih-C80−)2 dimers.
  • Item
    High Blocking Temperature of Magnetization and Giant Coercivity in the Azafullerene Tb 2 @C 79 N with a Single-Electron Terbium–Terbium Bond
    (Weinheim : Wiley-VCH, 2019) Velkos, Georgios; Krylov, Denis S.; Kirkpatrick, Kyle; Spree, Lukas; Dubrovin, Vasilii; Büchner, Bernd; Avdoshenko, Stanislav M.; Bezmelnitsyn, Valeriy; Davis, Sean; Faust, Paul; Duchamp, James; Dorn, Harry C.; Popov, Alexey A.
    The azafullerene Tb 2 @C 79 N is found to be a single-molecule magnet with a high 100-s blocking temperature of magnetization of 24 K and large coercivity. Tb magnetic moments with an easy-axis single-ion magnetic anisotropy are strongly coupled by the unpaired spin of the single-electron Tb−Tb bond. Relaxation of magnetization in Tb 2 @C 79 N below 15 K proceeds via quantum tunneling of magnetization with the characteristic time τ QTM =16 462±1230 s. At higher temperature, relaxation follows the Orbach mechanism with a barrier of 757±4 K, corresponding to the excited states, in which one of the Tb spins is flipped. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Triangular Monometallic Cyanide Cluster Entrapped in Carbon Cage with Geometry-Dependent Molecular Magnetism
    (Washington, DC : ACS Publications, 2016) Liu, Fupin; Gao, Cong-Li; Deng, Qingming; Zhu, Xianjun; Kostanyan, Aram; Westerström, Rasmus; Wang, Song; Tan, Yuan-Zhi; Tao, Jun; Xie, Su-Yuan; Popov, Alexey A.; Greber, Thomas; Yang, Shangfeng
    Clusterfullerenes are capable of entrapping a variety of metal clusters within carbon cage, for which the entrapped metal cluster generally keeps its geometric structure (e.g., bond distance and angle) upon changing the isomeric structure of fullerene cage, and whether the properties of the entrapped metal cluster is geometry-dependent remains unclear. Herein we report an unusual triangular monometallic cluster entrapped in fullerene cage by isolating several novel terbium cyanide clusterfullerenes (TbNC@C82) with different cage isomeric structures. Upon varying the isomeric structure of C82 cage from C2(5) to Cs(6) and to C2v(9), the entrapped triangular TbNC cluster exhibits significant distortions as evidenced by the changes of Tb–C(N) and C–N bond distances and variation of the Tb–C(N)–N(C) angle by up to 20°, revealing that the geometric structure of the entrapped triangular TbNC cluster is variable. All three TbNC@C82 molecules are found to be single-ion magnets, and the change of the geometric structure of TbNC cluster directly leads to the alternation of the magnetic relaxation time of the corresponding TbNC@C82 clusterfullerene.
  • Item
    Endohedral metal-nitride cluster ordering in metallofullerene-NiII(OEP) complexes and crystals : A theoretical study
    (Cambridge : RSC Publ., 2019) Dubrovin, Vasilii; Gan, Li-Hua; Büchner, Bernd; Popov, Alexey A.; Avdoshenko, Stanislav M.
    The ordering of endohedral clusterfullerenes Sc3N@C80 and YSc2N@C80 co-crystallized with Ni(OEP) and isolated complexes with Ni(OEP) have been investigated theoretically. Having used multiple orientations of M3N clusters inside the cages with Fibonacci sampling, we describe the effect of intermolecular interactions on the orientation of the endohedral cluster. © the Owner Societies.
  • Item
    Wave-shaped polycyclic hydrocarbons with controlled aromaticity
    (Cambridge : RSC, 2019) Ma, Ji; Zhang, Ke; Schellhammer, Karl Sebastian; Fu, Yubin; Komber, Hartmut; Xu, Chi; Popov, Alexey A.; Hennersdorf, Felix; Weigand, Jan J.; Zhou, Shengqiang; Pisula, Wojciech; Ortmann, Frank; Berger, Reinhard; Liu, Junzhi; Feng, Xinliang
    Controlling the aromaticity and electronic properties of curved π-conjugated systems has been increasingly attractive for the development of novel functional materials for organic electronics. Herein, we demonstrate an efficient synthesis of two novel wave-shaped polycyclic hydrocarbons (PHs) 1 and 2 with 64 π-electrons. Among them, the wave-shaped π-conjugated carbon skeleton of 2 is unambiguously revealed by single-crystal X-ray crystallography analysis. The wave-shaped geometry is induced by steric congestion in the cove and fjord regions. Remarkably, the aromaticity of these two structural isomers can be tailored by the annulated direction of cyclopenta[b]fluorene units. Isomer 1 (Eoptg = 1.13 eV) behaves as a closed-shell compound with weakly antiaromatic feature, whereas its structural isomer 2 displays a highly stable tetraradical character (y0 = 0.23; y1 = 0.22; t1/2 = 91 days) with a narrow optical energy gap of 0.96 eV. Moreover, the curved PH 2 exhibits remarkable ambipolar charge transport in solution-processed organic thin-film transistors. Our research provides a new insight into the design and synthesis of stable functional curved aromatics with multiradical characters. © The Royal Society of Chemistry.
  • Item
    Sc3CH@C80: selective 13C enrichment of the central carbon atom
    (Cambridge : Royal Society of Chemistry, 2016) Junghans, Katrin; Rosenkranz, Marco; Popov, Alexey A.
    Sc3CH@C80 is synthesized and characterized by 1H, 13C, and 45Sc NMR. A large negative chemical shift of the proton, -11.73 ppm in the Ih and -8.79 ppm in the D5h C80 cage isomers, is found. 13C satellites in the 1H NMR spectrum enabled indirect determination of the 13C chemical shift for the central carbon at 173 ± 1 ppm. Intensity of the satellites allowed determination of the 13C content for the central carbon atom. This unique possibility is applied to analyze the cluster/cage 13C distribution in mechanistic studies employing either 13CH4 or 13C powder to enrich Sc3CH@C80 with 13C.
  • Item
    PAH/PAH(CF3)n Donor/Acceptor Charge-Transfer Complexes in Solution and in Solid-State Co-Crystals
    (Weinheim : Wiley-VCH, 2019) Castro, Karlee P.; Bukovsky, Eric V.; Kuvychko, Igor V.; DeWeerd, Nicholas J.; Chen, Yu-Sheng; Deng, Shihu H.M.; Wang, Xue-Bin; Popov, Alexey A.; Strauss, Steven H.; Boltalina, Olga V.
    A solution, solid-state, and computational study is reported of polycyclic aromatic hydrocarbon PAH/PAH(CF3)n donor/acceptor (D/A) charge-transfer complexes that involve six PAH(CF3)n acceptors with known gas-phase electron affinities that range from 2.11(2) to 2.805(15) eV and four PAH donors, including seven CT co-crystal X-ray structures that exhibit hexagonal arrays of mixed π-stacks with 1/1, 1/2, or 2/1 D/A stoichiometries (PAH=anthracene, azulene, coronene, perylene, pyrene, triphenylene; n=5, 6). These are the first D/A CT complexes with PAH(CF3)n acceptors to be studied in detail. The nine D/A combinations were chosen to allow several structural and electronic comparisons to be made, providing new insights about controlling D/A interactions and the structures of CT co-crystals. The comparisons include, among others, CT complexes of the same PAH(CF3)n acceptor with four PAH donors and CT complexes of the same donor with four PAH(CF3)n acceptors. All nine CT complexes exhibit charge-transfer bands in solution with λmax between 467 and 600 nm. A plot of E(λmax) versus [IE(donor)−EA(acceptor)] for the nine CT complexes studied is linear with a slope of 0.72±0.03 eV eV−1. This plot is the first of its kind for CT complexes with structurally related donors and acceptors for which precise experimental gas-phase IEs and EAs are known. It demonstrates that conclusions based on the common assumption that the slope of a CT E(λmax) versus [IE−EA] plot is unity may be incorrect in at least some cases and should be reconsidered. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    19F NMR-, ESR-, and vis-NIR-spectroelectrochemical study of the unconventional reduction behaviour of a perfluoroalkylated fullerene: dimerization of the C70(CF3)10− radical anion
    (Cambridge : Soc., 2015) Zalibera, Michal; Machata, Peter; Clikeman, Tyler T.; Rosenkranz, Marco; Strauss, Steven H.; Boltalina, Olga V.; Popov, Alexey A.
    The most abundant isomer of C70(CF3)10 (70-10-1) is a rare example of a perfluoroalkylated fullerene exhibiting electrochemically irreversible reduction. We show that electrochemical reversibility at the first reduction step is achieved at scan rates higher than 500 V s−1. Applying ESR-, vis-NIR-, and 19F NMR-spectroelectrochemistry, as well as mass spectrometry and DFT calculations, we show that the (70-10-1)− radical monoanion is in equilibrium with a singly-bonded diamagnetic dimeric dianion. This study is the first example of 19F NMR spectroelectrochemistry, which promises to be an important method for the elucidation of redox mechanisms of fluoroorganic compounds. Additionally, we demonstrate the importance of combining different spectroelectrochemical methods and quantitative analysis of the transferred charge and spin numbers in the determination of the redox mechanism.
  • Item
    Single-Electron Lanthanide-Lanthanide Bonds Inside Fullerenes toward Robust Redox-Active Molecular Magnets
    (Washington, DC : ACS Publications, 2019) Liu, Fupin; Spree, Lukas; Krylov, Denis S.; Velkos, Georgios; Avdoshenko, Stanislav M.; Popov, Alexey A.
    A characteristic phenomenon of lanthanide-fullerene interactions is the transfer of metal valence electrons to the carbon cage. With early lanthanides such as La, a complete transfer of six valence electrons takes place for the metal dimers encapsulated in the fullerene cage. However, the low energy of the σ-type Ln-Ln bonding orbital in the second half of the lanthanide row limits the Ln2 → fullerene transfer to only five electrons. One electron remains in the Ln-Ln bonding orbital, whereas the fullerene cage with a formal charge of -5 is left electron-deficient. Such Ln2@C80 molecules are unstable in the neutral form but can be stabilized by substitution of one carbon atom by nitrogen to give azafullerenes Ln2@C79N or by quenching the unpaired electron on the fullerene cage by reacting it with a chemical such as benzyl bromide, transforming one sp2 carbon into an sp3 carbon and yielding the monoadduct Ln2@C80(CH2Ph). Because of the presence of the Ln-Ln bonding molecular orbital with one electron, the Ln2@C79N and Ln2@C80(R) molecules feature a unique single-electron Ln-Ln bond and an unconventional +2.5 oxidation state of the lanthanides.In this Account, which brings together metallofullerenes, molecular magnets, and lanthanides in unconventional valence states, we review the progress in the studies of dimetallofullerenes with single-electron Ln-Ln bonds and highlight the consequences of the unpaired electron residing in the Ln-Ln bonding orbital for the magnetic interactions between Ln ions. Usually, Ln···Ln exchange coupling in polynuclear lanthanide compounds is weak because of the core nature of 4f electrons. However, when interactions between Ln centers are mediated by a radical bridge, stronger coupling may be achieved because of the diffuse nature of radical-based orbitals. Ultimately, when the role of a radical bridge is played by a single unpaired electron in the Ln-Ln bonding orbital, the strength of the exchange coupling is increased dramatically. Giant exchange coupling in endohedral Ln2 dimers is combined with a rather strong axial ligand field exerted on the lanthanide ions by the fullerene cage and the excess electron density localized between two Ln ions. As a result, Ln2@C79N and Ln2@C80(CH2Ph) compounds exhibit slow relaxation of magnetization and exceptionally high blocking temperatures for Ln = Dy and Tb. At low temperatures, the [Ln3+-e-Ln3+] fragment behaves as a single giant spin. Furthermore, the Ln-Ln bonding orbital in dimetallofullerenes is redox-active, which allows its population to be changed by electrochemical reactions, thus changing the magnetic properties because the change in the number of electrons residing in the Ln-Ln orbital affects the magnetic structure of the molecule. © 2019 American Chemical Society.
  • Item
    (BB)-Carboryne Complex of Ruthenium: Synthesis by Double B-H Activation at a Single Metal Center
    (Washington, DC : ACS Publications, 2016) Eleazer, Bennett J.; Smith, Mark D.; Popov, Alexey A.; Peryshkov, Dmitry V.
    The first example of a transition metal (BB)-carboryne complex containing two boron atoms of the icosahedral cage connected to a single exohedral metal center (POBBOP)Ru(CO)2 (POBBOP = 1,7-OP(i-Pr)2-2,6-dehydro-m-carborane) was synthesized by double B-H activation within the strained m-carboranyl pincer framework. Theoretical calculations revealed that the unique three-membered (BB)>Ru metalacycle is formed by two bent B-Ru σ-bonds with the concomitant increase of the bond order between the two metalated boron atoms. The reactivity of the highly strained electron-rich (BB)-carboryne fragment with small molecules was probed by reactions with electrophiles. The carboryne-carboranyl transformations reported herein represent a new mode of cooperative metal-ligand reactivity of boron-based complexes.