Search Results

Now showing 1 - 2 of 2
  • Item
    Structural and chemical characterization of MoO2/ MoS2 triple-hybrid materials using electron microscopy in up to three dimensions
    (Cambridge : Royal Society of Chemistry, 2021) Frank, Anna; Gänsler, Thomas; Hieke, Stefan; Fleischmann, Simon; Husmann, Samantha; Presser, Volker; Scheu, Christina
    This work presents the synthesis of MoO2/MoS2core/shell nanoparticles within a carbon nanotube networkand their detailed electron microscopy investigation in up to three dimensions. The triple-hybrid core/shellmaterial was prepared by atomic layer deposition of molybdenum oxide onto carbon nanotube networks,followed by annealing in a sulfur-containing gas atmosphere. High-resolution transmission electronmicroscopy together with electron diffraction, supported by chemical analysisviaenergy dispersive X-ray and electron energy loss spectroscopy, gave proof of a MoO2core covered by few layers of a MoS2shell within an entangled network of carbon nanotubes. To gain further insights into this complexmaterial, the analysis was completed with 3D electron tomography. By usingZ-contrast imaging, distinctreconstruction of core and shell material was possible, enabling the analysis of the 3D structure of thematerial. These investigations showed imperfections in the nanoparticles which can impact materialperformance,i.e.for faradaic charge storage or electrocatalysis.
  • Item
    Surfactant stabilization of vanadium iron oxide derived from Prussian blue analog for lithium-ion battery electrodes
    (Cambridge : Royal Society of Chemistry, 2023) Bornamehr, Behnoosh; El Gaidi, Hiba; Arnold, Stefanie; Pameté, Emmanuel; Presser, Volker
    Due to their high energy density, Li-ion batteries have become indispensable for energy storage in many technical devices. Prussian blue and its analogs are a versatile family of materials. Apart from their direct use as an alkali-ion battery electrode, they are a promising source for templating other compounds due to the presence of carbon, nitrogen, and metallic elements in their structure, ease of synthesis, and high tunability. In this study, homogeneous iron vanadate derivatization from iron vanadium Prussian blue was successfully carried out using an energy efficient infrared furnace utilizing CO2 gas. Iron-vanadate is an inherently unstable electrode material if cycled at low potentials vs. Li/Li+. Several parameters were optimized to achieve a stable electrochemical performance of this derivative, and the effect of surfactants, such as tannic acid, sodium dodecylbenzene sulfonate, and polyvinylpyrrolidone were shown with their role in the morphology and electrochemical performance. While stabilizing the performance, we demonstrate that the type and order of addition of these surfactants are fundamental for a successful coating formation, otherwise they can hinder the formation of PBA, which has not been reported previously. Step-by-step, we illustrate how to prepare self-standing electrodes for Li-ion battery cells without using an organic solvent or a fluorine-containing binder while stabilizing the electrochemical performance. A 400 mA h g−1 capacity at the specific current of 250 mA g−1 was achieved after 150 cycles while maintaining a Coulombic efficiency of 99.2% over an extended potential range of 0.01–3.50 V vs. Li/Li+.