Search Results

Now showing 1 - 5 of 5
  • Item
    A New Family of Layered Metal-Organic Semiconductors: Cu/V-Organophosphonates
    (Weinheim : Wiley-VCH, 2023) Tholen, Patrik; Wagner, Lukas; Ruthes, Jean G. A.; Siemensmeyer, Konrad; Beglau, Thi Hai Yen; Muth, Dominik; Zorlu, Yunus; Okutan, Mustafa; Goldschmidt, Jan Christoph; Janiak, Christoph; Presser, Volker; Yavuzçetin, Özgür; Yücesan, Gündoğ
    Herein, we report the design and synthesis of a layered redox-active, antiferromagnetic metal organic semiconductor crystals with the chemical formula [Cu(H2O)2V(µ-O)(PPA)2] (where PPA is phenylphosphonate). The crystal structure of [Cu(H2O)2V(µ-O)(PPA)2] shows that the metal phosphonate layers are separated by phenyl groups of the phenyl phosphonate linker. Tauc plotting of diffuse reflectance spectra indicates that [Cu(H2O)2V(µ-O)(PPA)2] has an indirect band gap of 2.19 eV. Photoluminescence (PL) spectra indicate a complex landscape of energy states with PL peaks at 1.8 and 2.2 eV. [Cu(H2O)2V(µ-O)(PPA)2] has estimated hybrid ionic and electronic conductivity values between 0.13 and 0.6 S m−1. Temperature-dependent magnetization measurements show that [Cu(H2O)2V(µ-O)(PPA)2] exhibits short range antiferromagnetic order between Cu(II) and V(IV) ions. [Cu(H2O)2V(µ-O)(PPA)2] is also photoluminescent with photoluminescence quantum yield of 0.02%. [Cu(H2O)2V(µ-O)(PPA)2] shows high electrochemical, and thermal stability.
  • Item
    Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Zeiger, Marco; Massuti-Ballester, Pau; Fleischmann, Simon; Formanek, Petr; Borchardt, Lars; Presser, Volker
    In this study, we explore carbon onions (diameter below 10 nm), for the first time, as a substrate material for lithium sulfur cathodes. We introduce several scalable synthesis routes to fabricate carbon onion–sulfur hybrids by adopting in situ and melt diffusion strategies with sulfur fractions up to 68 mass%. The conducting skeleton of agglomerated carbon onions proved to be responsible for keeping active sulfur always in close vicinity to the conducting matrix. Therefore, the hybrids are found to be efficient cathodes for Li–S batteries, yielding 97–98% Coulombic efficiency over 150 cycles with a slow fading of the specific capacity (ca. 660 mA h g−1 after 150 cycles) in long term cycle test and rate capability experiments.
  • Item
    Surfactant stabilization of vanadium iron oxide derived from Prussian blue analog for lithium-ion battery electrodes
    (Cambridge : Royal Society of Chemistry, 2023) Bornamehr, Behnoosh; El Gaidi, Hiba; Arnold, Stefanie; Pameté, Emmanuel; Presser, Volker
    Due to their high energy density, Li-ion batteries have become indispensable for energy storage in many technical devices. Prussian blue and its analogs are a versatile family of materials. Apart from their direct use as an alkali-ion battery electrode, they are a promising source for templating other compounds due to the presence of carbon, nitrogen, and metallic elements in their structure, ease of synthesis, and high tunability. In this study, homogeneous iron vanadate derivatization from iron vanadium Prussian blue was successfully carried out using an energy efficient infrared furnace utilizing CO2 gas. Iron-vanadate is an inherently unstable electrode material if cycled at low potentials vs. Li/Li+. Several parameters were optimized to achieve a stable electrochemical performance of this derivative, and the effect of surfactants, such as tannic acid, sodium dodecylbenzene sulfonate, and polyvinylpyrrolidone were shown with their role in the morphology and electrochemical performance. While stabilizing the performance, we demonstrate that the type and order of addition of these surfactants are fundamental for a successful coating formation, otherwise they can hinder the formation of PBA, which has not been reported previously. Step-by-step, we illustrate how to prepare self-standing electrodes for Li-ion battery cells without using an organic solvent or a fluorine-containing binder while stabilizing the electrochemical performance. A 400 mA h g−1 capacity at the specific current of 250 mA g−1 was achieved after 150 cycles while maintaining a Coulombic efficiency of 99.2% over an extended potential range of 0.01–3.50 V vs. Li/Li+.
  • Item
    Carbon onion / sulfur hybrid cathodes via inverse vulcanization for lithium sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Srimuk, Pattarachai; Raju, Kumar; Tolosa, Aura; Fleischmann, Simon; Zeiger, Marco; Ozoemena, Kenneth I.; Borchardt, Lars; Presser, Volker
    A sulfur–1,3-diisopropenylbenzene copolymer was synthesized by ring-opening radical polymerization and hybridized with carbon onions at different loading levels. The carbon onion mixing was assisted by shear in a two-roll mill to capitalize on the softened state of the copolymer. The sulfur copolymer and the hybrids were thoroughly characterized in structure and chemical composition, and finally tested by electrochemical benchmarking. An enhancement of specific capacity was observed over 140 cycles at higher content of carbon onions in the hybrid electrodes. The copolymer hybrids demonstrate a maximum initial specific capacity of 1150 mA h gsulfur−1 (850 mA h gelectrode−1) and a low decay of capacity to reach 790 mA h gsulfur−1 (585 mA h gelectrode−1) after 140 charge/discharge cycles. All carbon onion/sulfur copolymer hybrid electrodes yielded high chemical stability, stable electrochemical performance superior to conventional melt-infiltrated reference samples having similar sulfur and carbon onion content. The amount of carbon onions embedded in the sulfur copolymer has a strong influence on the specific capacity, as they effectively stabilize the sulfur copolymer and sterically hinder the recombination of sulfur species to the S8 configuration.
  • Item
    Dual-Use of Seawater Batteries for Energy Storage and Water Desalination
    (Weinheim : Wiley-VCH, 2022) Arnold, Stefanie; Wang, Lei; Presser, Volker
    Seawater batteries are unique energy storage systems for sustainable renewable energy storage by directly utilizing seawater as a source for converting electrical energy and chemical energy. This technology is a sustainable and cost-effective alternative to lithium-ion batteries, benefitting from seawater-abundant sodium as the charge-transfer ions. Research has significantly improved and revised the performance of this type of battery over the last few years. However, fundamental limitations of the technology remain to be overcome in future studies to make this method even more viable. Disadvantages include degradation of the anode materials or limited membrane stability in aqueous saltwater resulting in low electrochemical performance and low Coulombic efficiency. The use of seawater batteries exceeds the application for energy storage. The electrochemical immobilization of ions intrinsic to the operation of seawater batteries is also an effective mechanism for direct seawater desalination. The high charge/discharge efficiency and energy recovery make seawater batteries an attractive water remediation technology. Here, the seawater battery components and the parameters used to evaluate their energy storage and water desalination performances are reviewed. Approaches to overcoming stability issues and low voltage efficiency are also introduced. Finally, an overview of potential applications, particularly in desalination technology, is provided.