Search Results

Now showing 1 - 6 of 6
  • Item
    Characterization of immune cell migration using microfabrication
    (Berlin ; Heidelberg : Springer, 2021) Vesperini, Doriane; Montalvo, Galia; Qu, Bin; Lautenschläger, Franziska
    The immune system provides our defense against pathogens and aberrant cells, including tumorigenic and infected cells. Motility is one of the fundamental characteristics that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors, even in the absence of external treatments. These processes are termed “immune surveillance.” Migration disorders of immune cells are related to autoimmune diseases, chronic inflammation, and tumor evasion. It is therefore essential to characterize immune cell motility in different physiologically and pathologically relevant scenarios to understand the regulatory mechanisms of functionality of immune responses. This review is focused on immune cell migration, to define the underlying mechanisms and the corresponding investigative approaches. We highlight the challenges that immune cells encounter in vivo, and the microfabrication methods to mimic particular aspects of their microenvironment. We discuss the advantages and disadvantages of the proposed tools, and provide information on how to access them. Furthermore, we summarize the directional cues that regulate individual immune cell migration, and discuss the behavior of immune cells in a complex environment composed of multiple directional cues.
  • Item
    High glucose distinctively regulates Ca2+ influx in cytotoxic T lymphocytes upon target recognition and thapsigargin stimulation
    (Hoboken, NJ : Wiley, 2020) Zou, Huajiao; Yang, Wenjuan; Schwär, Gertrud; Zhao, Renping; Alansary, Dalia; Yin, Deling; Schwarz, Eva C.; Niemeyer, Barbara A.; Qu, Bin
    In CTLs: High glucose‐culture enhances thapsigargin‐induced SOCE but decreases target recognition‐induced Ca2+ influx. High glucose‐culture regulates expression of ORAIs and STIMs without affecting glucose uptake. More high glucose‐cultured CTLs are prone to necrosis after execution of killing.
  • Item
    Optoregulated force application to cellular receptors using molecular motors
    (London : Nature Publishing Group, 2021) Zheng, Yijun; Han, Mitchell K.L.; Zhao, Renping; Blass, Johanna; Zhang, Jingnan; Zhou, Dennis W.; Colard-Itté, Jean-Rémy; Dattler, Damien; Çolak, Arzu; Hoth, Markus; García, Andrés J.; Qu, Bin; Bennewitz, Roland; Giuseppone, Nicolas; del Campo, Aránzazu
    Progress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e. motor proteins pulling on cytoskeletal fibers), we present a unique molecular machine that can apply forces at cell-matrix and cell-cell junctions using light as an energy source. The key actuator is a light-driven rotatory molecular motor linked to polymer chains, which is intercalated between a membrane receptor and an engineered biointerface. The light-driven actuation of the molecular motor is converted in mechanical twisting of the entangled polymer chains, which will in turn effectively “pull” on engaged cell membrane receptors (e.g., integrins, T cell receptors) within the illuminated area. Applied forces have physiologically-relevant magnitude and occur at time scales within the relevant ranges for mechanotransduction at cell-friendly exposure conditions, as demonstrated in force-dependent focal adhesion maturation and T cell activation experiments. Our results reveal the potential of nanomotors for the manipulation of living cells at the molecular scale and demonstrate a functionality which at the moment cannot be achieved by other technologies for force application.
  • Item
    T cell stiffness is enhanced upon formation of immunological synapse
    (Cambridge : eLife Sciences Publications, 2021) Jung, Philipp; Zhou, Xiangda; Iden, Sandra; Bischoff, Markus; Qu, Bin
    T cells are activated by target cells via an intimate contact, termed immunological synapse (IS). Cellular mechanical properties, especially stiffness, are essential to regulate cell functions. However, T cell stiffness at a subcellular level at the IS still remains largely elusive. In this work, we established an atomic force microscopy (AFM)-based elasticity mapping method on whole T cells to obtain an overview of the stiffness with a resolution of ~60 nm. Using primary human CD4+ T cells, we show that when T cells form IS with stimulating antibody-coated surfaces, the lamellipodia are stiffer than the cell body. Upon IS formation, T cell stiffness is enhanced both at the lamellipodia and on the cell body. Chelation of intracellular Ca2+ abolishes IS-induced stiffening at the lamellipodia but has no influence on cell-body-stiffening, suggesting different regulatory mechanisms of IS-induced stiffening at the lamellipodia and the cell body.
  • Item
    High Glucose Enhances Cytotoxic T Lymphocyte-Mediated Cytotoxicity
    (Lausanne : Frontiers Media, 2021) Zhu, Jie; Yang, Wenjuan; Zhou, Xiangda; Zöphel, Dorina; Soriano-Baguet, Leticia; Dolgener, Denise; Carlein, Christopher; Hof, Chantal; Zhao, Renping; Ye, Shandong; Schwarz, Eva C.; Brenner, Dirk; Prates Roma, Leticia; Qu, Bin
    Cytotoxic T lymphocytes (CTLs) are key players to eliminate tumorigenic or pathogen-infected cells using lytic granules (LG) and Fas ligand (FasL) pathways. Depletion of glucose leads to severely impaired cytotoxic function of CTLs. However, the impact of excessive glucose on CTL functions still remains largely unknown. Here we used primary human CD8+ T cells, which were stimulated by CD3/CD28 beads and cultured in medium either containing high glucose (HG, 25 mM) or normal glucose (NG, 5.6 mM). We found that in HG-CTLs, glucose uptake and glycolysis were enhanced, whereas proliferation remained unaltered. Furthermore, CTLs cultured in HG exhibited an enhanced CTL killing efficiency compared to their counterparts in NG. Unexpectedly, expression of cytotoxic proteins (perforin, granzyme A, granzyme B and FasL), LG release, cytokine/cytotoxic protein release and CTL migration remained unchanged in HG-cultured CTLs. Interestingly, additional extracellular Ca2+ diminished HG-enhanced CTL killing function. Our findings suggest that in an environment with excessive glucose, CTLs could eliminate target cells more efficiently, at least for a certain period of time, in a Ca2+-dependent manner.
  • Item
    Targeting the Microtubule-Network Rescues CTL Killing Efficiency in Dense 3D Matrices
    (Lausanne : Frontiers Media, 2021) Zhao, Renping; Zhou, Xiangda; Khan, Essak S.; Alansary, Dalia; Friedmann, Kim S.; Yang, Wenjuan; Schwarz, Eva C.; Del Campo, Aránzazu; Hoth, Markus; Qu, Bin
    Efficacy of cytotoxic T lymphocyte (CTL)-based immunotherapy is still unsatisfactory against solid tumors, which are frequently characterized by condensed extracellular matrix. Here, using a unique 3D killing assay, we identify that the killing efficiency of primary human CTLs is substantially impaired in dense collagen matrices. Although the expression of cytotoxic proteins in CTLs remained intact in dense collagen, CTL motility was largely compromised. Using light-sheet microscopy, we found that persistence and velocity of CTL migration was influenced by the stiffness and porosity of the 3D matrix. Notably, 3D CTL velocity was strongly correlated with their nuclear deformability, which was enhanced by disruption of the microtubule network especially in dense matrices. Concomitantly, CTL migration, search efficiency, and killing efficiency in dense collagen were significantly increased in microtubule-perturbed CTLs. In addition, the chemotherapeutically used microtubule inhibitor vinblastine drastically enhanced CTL killing efficiency in dense collagen. Together, our findings suggest targeting the microtubule network as a promising strategy to enhance efficacy of CTL-based immunotherapy against solid tumors, especially stiff solid tumors.