Search Results

Now showing 1 - 5 of 5
  • Item
    Phase transition and anomalous low temperature ferromagnetic phase in Pr 0.6Sr 0.4MnO 3 single crystals
    (New York, NY : Springer Science + Business Media B.V., 2009) Rößler, S.; Harikrishnan, S.; Naveen Kumar, C.M.; Bhat, H.L.; Elizabeth, S.; Rößler, U.K.; Steglich, F.; Wirth, S.
    We report on the magnetic and electrical properties of Pr 0.6Sr 0.4MnO 3 single crystals. This compound undergoes a continuous paramagnetic-ferromagnetic transition with a Curie temperature T C301 K and a first-order structural transition at T S64 K. At T S, the magnetic susceptibility exhibits an abrupt jump, and a corresponding small hump is seen in the resistivity. The critical behavior of the static magnetization and the temperature dependence of the resistivity are consistent with the behavior expected for a nearly isotropic ferromagnet with short-range exchange belonging to the Heisenberg universality class. The magnetization (M-H) curves below T S are anomalous in that the virgin curve lies outside the subsequent M-H loops. The hysteretic structural transition at T S as well as the irreversible magnetization processes below T S can be explained by phase separation between a high-temperature orthorhombic and a low-temperature monoclinic ferromagnetic phase.
  • Item
    Target-skyrmions and skyrmion clusters in nanowires of chiral magnets
    (Les Ulis : EDP Sciences, 2014) Leonov, A.O.; Rößler, U.K.; Mostovoy, M.
    In bulk non-centrosymmetric magnets the chiral Dzyaloshinskii-Moriya exchange stabilizes tubular skyrmions with a reversed magnetization in their centers. While the double-twist is favorable in the center of a skyrmion, it gives rise to an excess of the energy density at the outskirt. Therefore, magnetic anisotropies are required to make skyrmions more favorable than the conical spiral in bulk materials. Using Monte Carlo simulations, we show that in magnetic nanowires unusual skyrmions with a doubly twisted core and a number of concentric helicoidal undulations (target-skyrmions) are thermodynamically stable even in absence of single-ion anisotropies. Such skyrmions are free of magnetic charges and carry a non-integer skyrmion charge s. This state competes with clusters of s = 1 skyrmions. For very small radii, the target-skyrmion transforms into a skyrmion with s < 1, that resembles the vortex-like state stabilized by surface-induced anisotropies.
  • Item
    Chirality selection in the vortex state of magnetic nanodisks with a screw dislocation
    (Les Ulis : EDP Sciences, 2014) Butenko, A.B.; Rößler, U.K.
    Structural defects in magnetic crystalline materials may locally change magnetic properties and can significantly influence the behavior of magnetic nanostructures. E.g., surface-induced Dzyaloshinskii-Moriya interactions can strongly affect vortex structures in magnetic nanodisks causing a chirality selection. Near lattice defects, the spin-orbit interactions induce local antisymmetric Dzyaloshinskii-Moriya exchange and cause effective anisotropies, which can result in spin canting. Broken inversion symmetry near a defect leads to locally chiral exchange. We present a phenomenological approach for dislocation-induced Dzyaloshinskii-Moriya couplings. As an example we investigate effects of a screw dislocation at the center of a magnetic nanodisk with a vortex state. By numerical calculations on vortex profiles we analyze equilibrium parameters of the vortex as functions of applied magnetic field and the material and geometrical parameters. It is proposed that magnetic nanodisks with defects provide a suitable experimental setting to study induced chirality by spin-orbit effects.
  • Item
    Modulations in martensitic Heusler alloys originate from nanotwin ordering
    (London : Nature Publishing Group, 2018) Gruner, M.E.; Niemann, R.; Entel, P.; Pentcheva, R.; Rößler, U.K.; Nielsch, K.; Fähler, S.
    Heusler alloys exhibiting magnetic and martensitic transitions enable applications like magnetocaloric refrigeration and actuation based on the magnetic shape memory effect. Their outstanding functional properties depend on low hysteresis losses and low actuation fields. These are only achieved if the atomic positions deviate from a tetragonal lattice by periodic displacements. The origin of the so-called modulated structures is the subject of much controversy: They are either explained by phonon softening or adaptive nanotwinning. Here we used large-scale density functional theory calculations on the Ni2MnGa prototype system to demonstrate interaction energy between twin boundaries. Minimizing the interaction energy resulted in the experimentally observed ordered modulations at the atomic scale, it explained that a/b twin boundaries are stacking faults at the mesoscale, and contributed to the macroscopic hysteresis losses. Furthermore, we found that phonon softening paves the transformation path towards the nanotwinned martensite state. This unified both opposing concepts to explain modulated martensite.
  • Item
    Signatures of a magnetic field-induced unconventional nematic liquid in the frustrated and anisotropic spin-chain cuprate LiCuSbO4
    (London : Nature Publishing Group, 2017) Grafe, H.-J.; Nishimoto, S.; Iakovleva, M.; Vavilova, E.; Spillecke, L.; Alfonsov, A.; Sturza, M.-I.; Wurmehl, S.; Nojiri, H.; Rosner, H.; Richter, J.; Rößler, U.K.; Drechsler, S.-L.; Kataev, V.; Büchner, B.
    Modern theories of quantum magnetism predict exotic multipolar states in weakly interacting strongly frustrated spin-1/2 Heisenberg chains with ferromagnetic nearest neighbor (NN) inchain exchange in high magnetic fields. Experimentally these states remained elusive so far. Here we report strong indications of a magnetic field-induced nematic liquid arising above a field of ~13 T in the edge-sharing chain cuprate LiSbCuO4 ≡ LiCuSbO4. This interpretation is based on the observation of a field induced spin-gap in the measurements of the 7Li NMR spin relaxation rate T1−1 as well as a contrasting field-dependent power-law behavior of T1−1 vs. T and is further supported by static magnetization and ESR data. An underlying theoretical microscopic approach favoring a nematic scenario is based essentially on the NN XYZ exchange anisotropy within a model for frustrated spin-1/2 chains and is investigated by the DMRG technique. The employed exchange parameters are justified qualitatively by electronic structure calculations for LiCuSbO4.