Search Results

Now showing 1 - 8 of 8
  • Item
    External cavity modes in Lang-Kobayashi and traveling wave models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Radziunas, Mindaugas; Wünsche, Hans-Jürgen; Krauskopf, Bernd; Wolfrum, Matthias
    We investigate a semiconductor laser with delayed optical feedback due to an external cavity formed by a regular mirror. We discuss similarities and differences of the well-known Lang--Kobayashi delay differential equation model and the traveling wave partial differential equation model. For comparison we locate the continuous wave states in both models and analyze their stability.
  • Item
    Improving the modulation bandwidth in semiconductor lasers by passive feedback
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Radziunas, Mindaugas; Glitzky, Annegret; Bandelow, Uwe; Wolfrum, Matthias; Troppenz, Ute; Kreissl, Jochen; Rehbein, Wolfgang
    We explore the concept of passive-feedback lasers for direct signal modulation at 40 Gbit/s. Based on numerical simulation and bifurcation analysis, we explain the main mechanisms in these devices which are crucial for modulation at high speed. The predicted effects are demonstrated experimentally by means of correspondingly designed devices. In particular a significant improvement of the modulation bandwidth at low injection currents can be demonstrated.
  • Item
    Sampling techniques applicable for the characterization of the quality of self pulsations in semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2002) Radziunas, Mindaugas
    The aim of the presented report is to demonstrate how the sampling techniques can be used to characterize the quality of self pulsations in a multi-section semiconductor laser and the synchronization of self pulsations with an optical or electrical periodically modulated signal. The developed tools are described and some examples are given.
  • Item
    Stripe-array diode-laser in an off-axis external cavity : theory and experiment
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Jechow, Andreas; Lichtner, Mark; Menzel, Ralf; Radziunas, Mindaugas; Skoczowsky, Danilo; Vladimirov, Andrei
    Stripe-array diode lasers naturally operate in an anti-phase supermode. This produces a sharp double lobe far field at angles α depending on the period of the array. In this paper a 40 emitter gain guided stripe-array laterally coupled by off-axis filtered feedback is investigated experimentally and numerically. We predict theoretically and confirm experimentally that at doubled feedback angle 2α a stable higher order supermode exists with twice the number of emitters per array period. The theoretical model is based on time domain traveling wave equations for optical fields coupled to the carrier density equation taking into account diffusion of carriers. Feedback from the external reflector is modeled using Fresnel integration.
  • Item
    Mode transitions in distributed-feedback tapered master-oscillator power-amplifier
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Radziunas, Mindaugas; Tronciu, Vasile Z.; Bandelow, Uwe; Lichtner, Mark; Spreemann, Martin; Wenzel, Hans
    Theoretical and experimental investigations have been carried out to study the spectral and spatial behavior of monolithically integrated distributed-feedback tapered master-oscillators power-amplifiers emitting around 973 nm. Introduction of self and cross heating effects and the analysis of longitudinal optical modes allows us to explain experimental results. The results show a good qualitative agreement between measured and calculated characteristics.
  • Item
    Improving the stability of distributed-feedback tapered master-oscillator power-amplifiers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Tronciu, Vasile Z.; Lichtner, Mark; Radziunas, Mindaugas; Bandelow, U.; Wenzel, H.
    We report theoretical results on the wavelength stabilization in distributed-feedback master-oscillator power-amplifiers which are compact semiconductor laser devices capable of emitting a high brilliance beam at an optical power of several Watts. Based on a traveling wave equation model we calculate emitted optical power and spectral maps in dependence on the pump of the power amplifier. We show that a proper choice of the Bragg grating type and coupling coefficient allows to optimize the laser operation, such that for a wide range of injection currents the laser emits a high intensity continuous wave beam.
  • Item
    Numerical algorithms for Schrödinger equation with artificial boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Čiegis, Raimondas; Laukaitytė, Inga; Radziunas, Mindaugas
    We consider a one-dimensional linear Schrödinger problem defined on an infinite domain and approximated by the Crank-Nicolson type finite difference scheme. To solve this problem numerically we restrict the computational domain by introducing the reflective, absorbing or transparent artificial boundary conditions. We investigate the conservativity of the discrete scheme with respect to the mass and energy of the solution. Results of computational experiments are presented and the efficiency of different artificial boundary conditions is discussed.
  • Item
    Traveling wave modeling of dynamics in semiconductor ring lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Radziunas, Mindaugas
    We use the traveling wave model for simulating and analyzing nonlinear dynamics of complex semiconductor ring laser devices. This modeling allows to consider temporal-spatial distributions of the counter-propagating slowly varying optical fields and the carriers, what can be important when studying non-homogeneous ring cavities, propagation of short pulses or fast switching. By performing numerical integration of the model equations we observe several dynamic regimes as well as transitions between them. The computation of ring cavity modes explains some peculiarities of these regimes.