Numerical algorithms for Schrödinger equation with artificial boundary conditions

Loading...
Thumbnail Image

Date

Volume

1446

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

We consider a one-dimensional linear Schrödinger problem defined on an infinite domain and approximated by the Crank-Nicolson type finite difference scheme. To solve this problem numerically we restrict the computational domain by introducing the reflective, absorbing or transparent artificial boundary conditions. We investigate the conservativity of the discrete scheme with respect to the mass and energy of the solution. Results of computational experiments are presented and the efficiency of different artificial boundary conditions is discussed.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.