Search Results

Now showing 1 - 7 of 7
  • Item
    Beam shaping mechanism in spatially modulated edge emitting broad area semiconductor amplifiers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Radziunas, Mindaugas; Botey, Muriel; Herrero, Ramon; Staliunas, Kestutis
    We investigate beam shaping in broad area semiconductor amplifiers induced by a periodic modulation of the pump on a scale of several microns. The study is performed by solving numerically a (2+1)-dimensional model for the semiconductor amplifier. We show that, under realistic conditions, the anisotropic gain induced by the pump periodicity can show narrow angular profile of enhanced gain of less than one degree, providing an intrinsic filtering mechanism and eventually improving the spatial beam quality.
  • Item
    Spatial "rocking" for improving the spatial quality of the beam of broad area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Radziunas, Mindaugas; Staliunas, Kestutis
    The spatial ``rocking'' is a dynamical effect converting a phase-invariant oscillatory system into a phase-bistable one, where the average phase of the system locks to one of two values differing by pi. We demonstrate theoretically the spatial rocking in experimentally accessible and practically relevant systems -- the broad area semiconductor lasers. By numerical integration of the laser model equations we show the phase bistability of the optical fields and explore the bistability area in parameter space. We also predict the spatial patterns, such as phase domain walls and phase solitons, which are characteristic for the phase-bistable spatially extended pattern forming systems.
  • Item
    Mode transitions in DBR semiconductor lasers: experiments, mode analysis and simulations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Hasler, Karl-Heinz; Sumpf, Bernd; Tien, Tran Quoc; Wenzel, Hans
    The paper is concerned with a general ansatz of a phenomenological evolution model for solid-solid phase transformation kinetics in steel. To model the phase transition of austenite-ferrite, -pearlite or -bainite, a first order nonlinear ordinary differential equation (ODE) is considered. The main goal of this paper is to derive certain conditions for parameters which based on data obtained from transformation diagrams. This leads to a set of independent parameters for which the inverse problem has an unique solution
  • Item
    Modeling and simulations of beam stabilization in edge-emitting broad area semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Radziunas, Mindaugas; Cˇ iegis, Raimondas
    A 2+1 dimensional PDE traveling wave model describing spatial-lateral dynamics of edge-emitting broad area semiconductor devices is considered. A numerical scheme based on a split-step Fourier method is presented and implemented on a parallel compute cluster. Simulations of the model equations are used for optimizing of existing devices with respect to the emitted beam quality, as well as for creating and testing of novel device design concepts
  • Item
    Dynamics of micro-integrated external-cavity diode lasers: Simulations, analysis and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Radziunas, Mindaugas; Tronciu, Vasile Z.; Luvsandamdin, Erdenetsetseg; Kürbis, Christian; Wicht, Andreas; Wenzel, Hans
    This paper reports the results of numerical and experimental investigations of the dynamics of an external cavity diode laser device composed of a semiconductor laser and a distant Bragg grating, which provides an optical feedback. Due to the influence of the feedback, this system can operate at different dynamic regimes. The traveling wave model is used for simulations and analysis of the nonlinear dynamics in the considered laser device. Based on this model, a detailed analysis of the optical modes is performed, and the stability of the stationary states is discussed. It is shown, that the results obtained from the simulation and analysis of the device are in good agreement with experimental findings.
  • Item
    Narrowing of the far field in spatially modulated edge-emitting broad area semiconductor amplifiers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Radziunas, Mindaugas; Herrero, Ramon; Botey, Muriel; Staliunas, Kestutis
    We perform a detailed theoretical analysis of the far field narrowing in broad-area edgeemitting semiconductor amplifiers that are electrically injected through the contacts periodically modulated in both, longitudinal and transverse, directions. The beam propagation properties within the semiconductor amplifier are explored by a (1+2)-dimensional traveling wave model and its coupled mode approximation. Assuming a weak field regime, we analyze the impact of different parameters and modulation geometry on the narrowing of the principal far field component.
  • Item
    Tunable semiconductor ring laser with filtered optical feedback: Traveling wave description and experimental validation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Radziunas, Mindaugas; Khoder, Mulham; Tronciu, Vasile; Danckaert, Jan; Verschaffelt, Guy
    We study experimentally and theoretically a semiconductor ring laser with four filtering channels providing filtered delayed optical feedback. To describe and analyze the wavelength selection and tuning in this device, we exploit the traveling-wave model determining the evolution of optical fields and carrier density along the ring cavity and filtering branches. The numerical results agree with the experimental observations: we can reproduce the wavelength tuning, the multiple wavelength emission, and the wavelength switching speed measured in these devices. The traveling-wave model allows us to study in detail the effect of the different laser parameters and can be useful for designing the future devices.