Search Results

Now showing 1 - 2 of 2
  • Item
    Chirped photonic crystal for spatially filtered optical feedback to a broad-area laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Brée, Carsten; Gailevicius, Darius; Purlys, Vytautas; Werner, Guillermo Garre; Staliunas, Kestutis; Rathsfeld, Andreas; Schmidt, Gunther; Radziunas, Mindaugas
    We derive and analyze an efficient model for reinjection of spatially filtered optical feedback from an external resonator to a broad area, edge emitting semiconductor laser diode. Spatial filtering is achieved by a chirped photonic crystal, with variable periodicity along the optical axis and negligible resonant backscattering. The optimal chirp is obtained from a genetic algorithm, which yields solutions that are robust against perturbations. Extensive numerical simulations of the composite system with our optoelectronic solver indicate that spatially filtered reinjection enhances lower-order transversal optical modes in the laser diode and, consequently, improves the spatial beam quality.
  • Item
    Finite element method to fluid-solid interaction problems with unbounded periodic interfaces
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Hu, Guanghui; Rathsfeld, Andreas; Yin, Tao
    Consider a time-harmonic acoustic plane wave incident onto a doubly periodic (biperiodic) surface from above. The medium above the surface is supposed to be filled with a homogeneous compressible inviscid fluid of constant mass density, whereas the region below is occupied by an isotropic and linearly elastic solid body characterized by its Lamé constants. This paper is concerned with a variational approach to the fluid-solid interaction problems with unbounded biperiodic Lipschitz interfaces between the domains of the acoustic and elastic waves. The existence of quasi-periodic solutions in Sobolev spaces is established at arbitrary frequency of incidence, while uniqueness is proved only for small frequencies or for all frequencies excluding a discrete set. A finite element scheme coupled with Dirichlet-to-Neumann mappings is proposed. The Dirichlet-to-Neumann mappings are approximated by truncated Rayleigh series expansions, and, finally, numerical tests in 2D are performed.