Search Results

Now showing 1 - 9 of 9
  • Item
    Nanometer-resolved mechanical properties around GaN crystal surface steps
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2014) Buchwald, J.; Sarmanova, M.; Rauschenbach, B.; Mayr, S.G.
    The mechanical properties of surfaces and nanostructures deviate from their bulk counterparts due to surface stress and reduced dimensionality. Experimental indentation-based techniques present the challenge of measuring these effects, while avoiding artifacts caused by the measurement technique itself. We performed a molecular dynamics study to investigate the mechanical properties of a GaN step of only a few lattice constants step height and scrutinized its applicability to indentation experiments using a finite element approach (FEM). We show that the breakdown of half-space symmetry leads to an "artificial" reduction of the elastic properties of comparable lateral dimensions which overlays the effect of surface stress. Contact resonance atomic force microscopy (CR-AFM) was used to compare the simulation results with experiments.
  • Item
    Topography evolution of germanium thin films synthesized by pulsed laser deposition
    (New York, NY : American Inst. of Physics, 2017) Schumacher, P.; Mayr, S.G.; Rauschenbach, B.
    Germanium thin films were deposited by Pulsed Laser Deposition (PLD) onto single crystal Ge (100) and Si (100) substrates with a native oxide film on the surface. The topography of the surface was investigated by Atomic Force Microscopy (AFM) to evaluate the scaling behavior of the surface roughness of amorphous and polycrystalline Ge films grown on substrates with different roughnesses. Roughness evolution was interpreted within the framework of stochastic rate equations for thin film growth. Here the Kardar-Parisi-Zhang equation was used to describe the smoothening process. Additionally, a roughening regime was observed in which 3-dimensional growth occurred. Diffusion of the deposited Ge adatoms controlled the growth of the amorphous Ge thin films. The growth of polycrystalline thin Ge films was dominated by diffusion processes only in the initial stage of the growth.
  • Item
    Laser-induced surface modification of biopolymers - Micro/nanostructuring and functionalization
    (Bristol : IOP Publ., 2018) Stankova, N.E.; Atanasov, P.A.; Nedyalkov, N.N.; Tatchev, Dr.; Kolev, K.N.; Valova, E.I.; Armyanov, St.A.; Grochowska, K.; Śliwiński, G.; Fukata, N.; Hirsch, D.; Rauschenbach, B.
    The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine for preparation of high-tech devices because of its remarkable properties. In this paper, we present experimental results on surface modification of PDMS elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of the chemical composition and the morphological structure inside the treated area in dependence on the processing parameters - wavelength, laser fluence and number of pulses. Remarkable chemical transformations and changes of the morphological structure were observed, resulting in the formation of a highly catalytically active surface, which was successfully functionalized via electroless Ni and Pt deposition by a sensitizing-activation free process. The results obtained are very promising in view of applying the methods of laser-induced micro- and nano-structuring and activation of biopolymers' surface and further electroless metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and muscular surface interfacing implantable systems.
  • Item
    Preparation and characterisation of carbon-free Cu(111) films on sapphire for graphene synthesis
    (Bristol : IOP Publ., 2018) Lehnert, J.; Spemann, D.; Surjuse, S.; Mensing, M.; Grüner, C.; With, P.; Schumacher, P.; Finzel, A.; Hirsch, D.; Rauschenbach, B.
    This work presents an investigation of carbon formed on polycrystalline Cu(111) thin films prepared by ion beam sputtering at room temperature on c-plane Al2O3 after thermal treatment in a temperature range between 300 and 1020°C. The crystallinity of the Cu films was studied by XRD and RBS/channeling and the surface was characterised by Raman spectroscopy, XPS and AFM for each annealing temperature. RBS measurements revealed the diffusion of the Cu into the Al2O3 substrate at high temperatures of > 700°C. Furthermore, a cleaning procedure using UV ozone treatment is presented to remove the carbon from the surface which yields essentially carbon-free Cu films that open the possibility to synthesize graphene of well-controlled thickness (layer number).
  • Item
    SERS analysis of Ag nanostructures produced by ion-beam deposition
    (Bristol : IOP Publ., 2018) Atanasov, P.A.; Nedyalkov, N.N.; Nikov, Ru.G.; Grüner, Ch.; Rauschenbach, B.; Fukata, N.
    This study deals with the development of a novel technique for formation of advanced Ag nanostructures (NSs) to be applied to high-resolution analyses based on surface enhanced Raman scattering (SERS). It has direct bearing on human health and food quality, e.g., monitoring small amount or traces of pollutants or undesirable additives. Three types of nanostructured Ag samples were produced using ion-beam deposition at glancing angle (GLAD) on quartz. All fabricated structures were covered with BI-58 pesticide (dimethoate) or Rhodamine 6G (R6G) for testing their potential for use as substrates for (SERS).
  • Item
    Nanoscale mechanical surface properties of single crystalline martensitic Ni-Mn-Ga ferromagnetic shape memory alloys
    (Bristol : IOP, 2012) Jakob, A.M.; Müller, M.; Rauschenbach, B.; Mayr, S.G.
    Located beyond the resolution limit of nanoindentation, contact resonance atomic force microscopy (CR-AFM) is employed for nano-mechanical surface characterization of single crystalline 14M modulated martensitic Ni-Mn-Ga (NMG) thin films grown by magnetron sputter deposition on (001) MgO substrates. Comparing experimental indentation moduli-obtained with CR-AFM-with theoretical predictions based on density functional theory (DFT) indicates the central role of pseudo plasticity and inter-martensitic phase transitions. Spatially highly resolved mechanical imaging enables the visualization of twin boundaries and allows for the assessment of their impact on mechanical behavior at the nanoscale. The CR-AFM technique is also briefly reviewed. Its advantages and drawbacks are carefully addressed.
  • Item
    Pattern formation on Ge by low energy ion beam erosion
    (Bristol : IOP, 2013) Teichmann, M.; Lorbeer, J.; Ziberi, B.; Frost, F.; Rauschenbach, B.
    Modification of nanoscale surface topography is inherent to low-energy ion beam erosion processes and is one of the most important fields of nanotechnology. In this report a comprehensive study of surface smoothing and self-organized pattern formation on Ge(100) by using different noble gases ion beam erosion is presented. The investigations focus on low ion energies ( 2000 eV) and include the entire range of ion incidence angles. It is found that for ions (Ne, Ar) with masses lower than the mass of the Ge target atoms, no pattern formation occurs and surface smoothing is observed for all angles of ion incidence. In contrast, for erosion with higher mass ions (Kr, Xe), ripple formation starts at incidence angles of about 65° depending on ion energy. At smaller incident angles surface smoothing occurs again. Investigations of the surface dynamics for specific ion incidence angles by changing the ion fluence over two orders of magnitude gives a clear evidence for coarsening and faceting of the surface pattern. Both observations indicate that gradient-dependent sputtering and reflection of primary ions play crucial role in the pattern evolution, just at the lowest accessible fluences. The results are discussed in relation to recently proposed redistributive or stress-induced models for pattern formation. In addition, it is argued that a large angular variation of the sputter yield and reflected primary ions can significantly contribute to pattern formation and evolution as nonlinear and non-local processes as supported by simulation of sputtering and ion reflection.
  • Item
    Properties of ns-laser processed polydimethylsiloxane (PDMS)
    (Bristol : IOP Publ., 2016) Atanasov, P.A.; Stankova, N.E.; Nedyalkov, N.N.; Stoyanchov, T.R.; Nikov, R.G.; Fukata, N.; Gerlach, J.W.; Hirsch, D.; Rauschenbach, B.
    The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine and for preparation of high-tech devices because of its remarkable properties. In this work, we present the experimental results on drilling holes on the PDMS surface by using ultraviolet, visible or near-infrared ns-laser pulses and on studying the changes of the chemical composition and structure inside the processed areas. The material in the zone of the holes is studied by XRD, ?-Raman analyses and 3D laser microscopy in order to obtain information on the influence of different processing laser parameters, as wavelength, fluence and number of consecutive pulses on the material transformation and its modification.
  • Item
    Glancing angle deposition of sculptured thin metal films at room temperature
    (Bristol : IOP Publ., 2017-9-1) Liedtke, S.; Grüner, C.; Lotnyk, A.; Rauschenbach, B.
    Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.