Search Results

Now showing 1 - 10 of 13
  • Item
    Hölder continuity for second order elliptic problems with nonsmooth data
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Haller-Dintelmann, Robert; Meyer, Christian; Rehberg, Joachim
    The well known De Giorgi result on Hölder continuity for solutions of the Dirichlet problem is re-established for mixed boundary value problems, provided that the underlying domain is a Lipschitz domain and the border between the Dirichlet and the Neumann boundary part satisfies a very general geometric condition. Implications of this result for optimal control theory are presented.
  • Item
    Monotonicity properties of the quantum mechanical particle density
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Kaiser, Hans-Christoph; Neidhardt, Hagen; Rehberg, Joachim
    An elementary proof of the anti-monotonicity of the quantum mechanical particle density with respect to the potential in the Hamiltonian is given for a large class of admissible thermodynamic equilibrium distribution functions. In particular the zero temperature case is included.
  • Item
    Classical solutions of drift-diffusion equations for semiconductor devices: the 2D case
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Kaiser, Hans-Christian; Neidhardt, Hagen; Rehberg, Joachim; Gajewski, Herbert; Gröger, Konrad; Zacharias, Klaus
    We regard drift-diffusion equations for semiconductor devices in Lebesgue spaces. To that end we reformulate the (generalized) van Roosbroeck system as an evolution equation for the potentials to the driving forces of the currents of electrons and holes. This evolution equation falls into a class of quasi-linear parabolic systems which allow unique, local in time solution in certain Lebesgue spaces. In particular, it turns out that the divergence of the electron and hole current is an integrable function. Hence, Gauss' theorem applies, and gives the foundation for space discretization of the equations by means of finite volume schemes. Moreover, the strong differentiability of the electron and hole density in time is constitutive for the implicit time discretization scheme. Finite volume discretization of space, and implicit time discretization are accepted custom in engineering and scientific computing. ---This investigation puts special emphasis on non-smooth spatial domains, mixed boundary conditions, and heterogeneous material compositions, as required in electronic device simulation.
  • Item
    Maximal parabolic regularity for divergence operators including mixed boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Haller-Dintelmann, Robert; Rehberg, Joachim
    We show that elliptic second order operators $A$ of divergence type fulfill maximal parabolic regularity on distribution spaces, even if the underlying domain is highly non-smooth and $A$ is complemented with mixed boundary conditions. Applications to quasilinear parabolic equations with non-smooth data are presented.
  • Item
    Coercivity for elliptic operators and positivity of solutions on Lipschitz domains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Haller-Dintelmann, Robert; Rehberg, Joachim
    We show that usual second order operators in divergence form satisfy coercivity on Lipschitz domains if they are either complemented with homogeneous Dirichlet boundary conditions on a set of non-zero boundary measure or if a suitable Robin boundary condition is posed. Moreover, we prove the positivity of solutions in a general, abstract setting, provided that the right hand side is a positive functional. Finally, positive elements from $W^-1,2$ are identified as positive measures
  • Item
    Optimal regularity for elliptic transmission problems including C1 interfaces
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Elschner, Johannes; Rehberg, Joachim; Schmidt, Gunther
    We prove an optimal regularity result for elliptic operators $-nabla cdot mu nabla:W^1,q_0 rightarrow W^-1,q$ for a $q>3$ in the case when the coefficient function $mu$ has a jump across a $C^1$ interface and is continuous elsewhere. A counterexample shows that the $C^1$ condition cannot be relaxed in general. Finally, we draw some conclusions for corresponding parabolic operators.
  • Item
    Optimal control for the thermistor problem
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Hömberg, Dietmar; Meyer, Christian; Rehberg, Joachim; Ring, Wolfgang
    This paper is concerned with the state-constrained optimal control of the two-dimensional thermistor problem, a quasi-linear coupled system of a parabolic and elliptic PDE with mixed boundary conditions. This system models the heating of a conducting material by means of direct current. Existence, uniqueness and continuity for the state system are derived by employing maximal elliptic and parabolic regularity. By similar arguments the linearized state system is discussed, while the adjoint system involving measures is investigated using a duality argument. These results allow to derive first-order necessary conditions for the optimal control problem.
  • Item
    Maximal parabolic regularity for divergence operators on distribution spaces
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Haller-Dintelmann, Robert; Rehberg, Joachim
    We show that elliptic second order operators A of divergence type fulfill maximal parabolic regularity on distribution spaces, even if the underlying domain is highly non-smooth, the coefficients of A are discontinuous and A is complemented with mixed boundary conditions. Applications to quasilinear parabolic equations with non-smooth data are presented
  • Item
    Quasilinear parabolic systems with mixed boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Hieber, Matthias; Rehberg, Joachim
    In this paper we investigate quasilinear systems of reaction-diffusion equations with mixed Dirichlet-Neumann bondary conditions on non smooth domains. Using techniques from maximal regularity and heat-kernel estimates we prove existence of a unique solution to systems of this type.
  • Item
    Modeling and simulation of strained quantum wells in semiconductorlasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2000) Bandelow, Uwe; Kaiser, Hans-Christoph; Koprucki, Thomas; Rehberg, Joachim
    A model allowing for efficiently obtaining band structure information on semiconductor Quantum Well structures will be demonstrated which is based on matrix-valued kp-Schrödinger operators. Effects such as confinement, band mixing, spin-orbit interaction and strain can be treated consistently. The impact of prominent Coulomb effects can be calculated by including the Hartree interaction via the Poisson equation and the bandgap renormalization via exchange-correlation potentials, resulting in generalized (matrix-valued) Schrödinger-Poisson systems. Band structure information enters via densities and the optical response function into comprehensive simulations of Multi Quantum Well lasers. These device simulations yield valuable information on device characteristics, including effects of carrier transport, waveguiding and heating and can be used for optimization.